• Title/Summary/Keyword: Text Document

Search Result 669, Processing Time 0.025 seconds

Text Summarization on Large-scale Vietnamese Datasets

  • Ti-Hon, Nguyen;Thanh-Nghi, Do
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.309-316
    • /
    • 2022
  • This investigation is aimed at automatic text summarization on large-scale Vietnamese datasets. Vietnamese articles were collected from newspaper websites and plain text was extracted to build the dataset, that included 1,101,101 documents. Next, a new single-document extractive text summarization model was proposed to evaluate this dataset. In this summary model, the k-means algorithm is used to cluster the sentences of the input document using different text representations, such as BoW (bag-of-words), TF-IDF (term frequency - inverse document frequency), Word2Vec (Word-to-vector), Glove, and FastText. The summary algorithm then uses the trained k-means model to rank the candidate sentences and create a summary with the highest-ranked sentences. The empirical results of the F1-score achieved 51.91% ROUGE-1, 18.77% ROUGE-2 and 29.72% ROUGE-L, compared to 52.33% ROUGE-1, 16.17% ROUGE-2, and 33.09% ROUGE-L performed using a competitive abstractive model. The advantage of the proposed model is that it can perform well with O(n,k,p) = O(n(k+2/p)) + O(nlog2n) + O(np) + O(nk2) + O(k) time complexity.

A Study on Extracting the Document Text for Unallocated Areas of Data Fragments (비할당 영역 데이터 파편의 문서 텍스트 추출 방안에 관한 연구)

  • Yoo, Byeong-Yeong;Park, Jung-Heum;Bang, Je-Wan;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.43-51
    • /
    • 2010
  • It is meaningful to investigate data in unallocated space because we can investigate the deleted data. Consecutively complete file recovery using the File Carving is possible in unallocated area, but noncontiguous or incomplete data recovery is impossible. Typically, the analysis of the data fragments are needed because they should contain large amounts of information. Microsoft Word, Excel, PowerPoint and PDF document file's text are stored using compression or specific document format. If the part of aforementioned document file was stored in unallocated data fragment, text extraction is possible using specific document format. In this paper, we suggest the method of extracting a particular document file text in unallocated data fragment.

A DOM-Based Fuzzing Method for Analyzing Seogwang Document Processing System in North Korea (북한 서광문서처리체계 분석을 위한 Document Object Model(DOM) 기반 퍼징 기법)

  • Park, Chanju;Kang, Dongsu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.5
    • /
    • pp.119-126
    • /
    • 2019
  • Typical software developed and used by North Korea is Red Star and internal application software. However, most of the existing research on the North Korean software is the software installation method and general execution screen analysis. One of the ways to identify software vulnerabilities is file fuzzing, which is a typical method for identifying security vulnerabilities. In this paper, we use file fuzzing to analyze the security vulnerability of the software used in North Korea's Seogwang Document Processing System. At this time, we propose the analysis of open document text (ODT) file produced by Seogwang Document Processing System, extraction of node based on Document Object Mode (DOM) to determine test target, and generation of mutation file through insertion and substitution, this increases the number of crash detections at the same testing time.

Correction of Specular Region on Document Images (문서 영상의 전반사 영역 보정 기법)

  • Simon, Christian;Williem;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.239-240
    • /
    • 2013
  • The quality of document images captured by digital camera might be degraded because of non-uniform illumination condition. The high illumination (glare distortion) affects on the contrast condition of the document images. This condition leads to the poor contrast condition of the text in document image. So, optical character recognition (OCR) system might hardly recognize text in the high illuminated area. The method to increase the contrast condition between text (foreground) and background in high illuminated area is proposed in this paper.

  • PDF

Word-Level Embedding to Improve Performance of Representative Spatio-temporal Document Classification

  • Byoungwook Kim;Hong-Jun Jang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.830-841
    • /
    • 2023
  • Tokenization is the process of segmenting the input text into smaller units of text, and it is a preprocessing task that is mainly performed to improve the efficiency of the machine learning process. Various tokenization methods have been proposed for application in the field of natural language processing, but studies have primarily focused on efficiently segmenting text. Few studies have been conducted on the Korean language to explore what tokenization methods are suitable for document classification task. In this paper, an exploratory study was performed to find the most suitable tokenization method to improve the performance of a representative spatio-temporal document classifier in Korean. For the experiment, a convolutional neural network model was used, and for the final performance comparison, tasks were selected for document classification where performance largely depends on the tokenization method. As a tokenization method for comparative experiments, commonly used Jamo, Character, and Word units were adopted. As a result of the experiment, it was confirmed that the tokenization of word units showed excellent performance in the case of representative spatio-temporal document classification task where the semantic embedding ability of the token itself is important.

Comparison of term weighting schemes for document classification (문서 분류를 위한 용어 가중치 기법 비교)

  • Jeong, Ho Young;Shin, Sang Min;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.265-276
    • /
    • 2019
  • The document-term frequency matrix is a general data of objects in text mining. In this study, we introduce a traditional term weighting scheme TF-IDF (term frequency-inverse document frequency) which is applied in the document-term frequency matrix and used for text classifications. In addition, we introduce and compare TF-IDF-ICSDF and TF-IGM schemes which are well known recently. This study also provides a method to extract keyword enhancing the quality of text classifications. Based on the keywords extracted, we applied support vector machine for the text classification. In this study, to compare the performance term weighting schemes, we used some performance metrics such as precision, recall, and F1-score. Therefore, we know that TF-IGM scheme provided high performance metrics and was optimal for text classification.

Adaptive Conversion of Web Content for Mobile Terminals (이동단말을 위한 적응적 웹 문서 변환)

  • Kang, Sueng-Chun;Chung, Kwang-Sue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.6
    • /
    • pp.635-642
    • /
    • 2000
  • In this paper, we proposed an efficient document conversion mechanism to provide a adaptive web document to mobile terminals. We also proposed a RHTML(Reduced HTML) to archive the adaptive tag reduction. Markup error correction process in the proposed adaptive document conversion mechanism converts a HTML(HyperText Markup Language) document into a XML(Extensible Markup Language) application document. This. process makes web document easy to handle with a DOM (Document Object Mode)) as the tree model and removes the hardware overhead in mobile terminals. Also, tag reduction process provides the adaptive web document with three DTD(Document Type Definition)s in the RHTML.

  • PDF

Improving the Performance of a Fast Text Classifier with Document-side Feature Selection (문서측 자질선정을 이용한 고속 문서분류기의 성능향상에 관한 연구)

  • Lee, Jae-Yun
    • Journal of Information Management
    • /
    • v.36 no.4
    • /
    • pp.51-69
    • /
    • 2005
  • High-speed classification method becomes an important research issue in text categorization systems. A fast text categorization technique, named feature value voting, is introduced recently on the text categorization problems. But the classification accuracy of this technique is not good as its classification speed. We present a novel approach for feature selection, named document-side feature selection, and apply it to feature value voting method. In this approach, there is no feature selection process in learning phase; but realtime feature selection is executed in classification phase. Our results show that feature value voting with document-side feature selection can allow fast and accurate text classification system, which seems to be competitive in classification performance with Support Vector Machines, the state-of-the-art text categorization algorithms.

A Study on Plagiarism Detection and Document Classification Using Association Analysis (연관분석을 이용한 효과적인 표절검사 및 문서분류에 관한 연구)

  • Hwang, Insoo
    • The Journal of Information Systems
    • /
    • v.23 no.3
    • /
    • pp.127-142
    • /
    • 2014
  • Plagiarism occurs when the content is copied without permission or citation, and the problem of plagiarism has rapidly increased because of the digital era of resources available on the World Wide Web. An important task in plagiarism detection is measuring and determining similar text portions between a given pair of documents. One of the main difficulties of this task is that not all similar text fragments are examples of plagiarism, since thematic coincidences also tend to produce portions of similar text. In order to handle this problem, this paper proposed association analysis in data mining to detect plagiarism. This method is able to detect common actions performed by plagiarists such as word deletion, insertion and transposition, allowing to obtain plausible portions of plagiarized text. Experimental results employing an unsupervised document classification strategy showed that the proposed method outperformed traditionally used approaches.

Building Topic Hierarchy of e-Documents using Text Mining Technology

  • Kim, Han-Joon
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.294-301
    • /
    • 2004
  • ·Text-mining approach to e-documents organization based on topic hierarchy - Machine-Learning & information Theory-based ㆍ 'Category(topic) discovery' problem → document bundle-based user-constraint document clustering ㆍ 'Automatic categorization' problem → Accelerated EM with CU-based active learning → 'Hierarchy Construction' problem → Unsupervised learning of category subsumption relation

  • PDF