• 제목/요약/키워드: Text Detection

검색결과 402건 처리시간 0.026초

Chatting Pattern Based Game BOT Detection: Do They Talk Like Us?

  • Kang, Ah Reum;Kim, Huy Kang;Woo, Jiyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권11호
    • /
    • pp.2866-2879
    • /
    • 2012
  • Among the various security threats in online games, the use of game bots is the most serious problem. Previous studies on game bot detection have proposed many methods to find out discriminable behaviors of bots from humans based on the fact that a bot's playing pattern is different from that of a human. In this paper, we look at the chatting data that reflects gamers' communication patterns and propose a communication pattern analysis framework for online game bot detection. In massive multi-user online role playing games (MMORPGs), game bots use chatting message in a different way from normal users. We derive four features; a network feature, a descriptive feature, a diversity feature and a text feature. To measure the diversity of communication patterns, we propose lightly summarized indices, which are computationally inexpensive and intuitive. For text features, we derive lexical, syntactic and semantic features from chatting contents using text mining techniques. To build the learning model for game bot detection, we test and compare three classification models: the random forest, logistic regression and lazy learning. We apply the proposed framework to AION operated by NCsoft, a leading online game company in Korea. As a result of our experiments, we found that the random forest outperforms the logistic regression and lazy learning. The model that employs the entire feature sets gives the highest performance with a precision value of 0.893 and a recall value of 0.965.

효과적인 도서목록 검색을 위한 개선된 OCR알고리즘에 관한 연구 (Improvement OCR Algorithm for Efficient Book Catalog RetrievalTechnology)

  • 하문;백영현;문성룡
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.152-159
    • /
    • 2010
  • 본 논문에서는 기울어진 문자, 다양한 크기, 글씨체, 흐린 문자를 포함한 입력영상의 문자 복원과 인식, 효율적인 도서 검색을 위한 광학문자인식 알고리즘을 제안한다. 본 논문에서 제안한 광학문자 인식알고리즘은 검출부와 인식부로 구성되며, 검출부에서는 복잡한 배경에서 정확한 도서 영역 검출을 위하여 로버츠 에지 연산자와 허도로프 거리 알고리즘을 적용하여 필요한 영역을 검출하였다. 또한 인식부에서는 문자의 크기와 경사도, 부분 손실 등의 영상에 강인성을 갖는 바이큐빅 보간법을 적용하여 데이터 손실 복원과, 반자동 기울기를 갖는 입력 영상의 보정을 하였다. 모의실험 결과 기존 알고리즘 보다 인식률에서는 6%, 검색시간에서는 1.077초 더 우수함을 확인하였다.

공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘 (Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification)

  • 홍성삼;김동욱;한명묵
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2019
  • 빅 데이터에서 텍스트 마이닝은 많은 수의 데이터로부터 많은 특징 추출하기 때문에, 클러스터링 및 분류 과정의 계산 복잡도가 높고 분석결과의 신뢰성이 낮아질 수 있다. 특히 텍스트마이닝 과정을 통해 얻는 Term document matrix는 term과 문서간의 특징들을 표현하고 있지만, 희소행렬 형태를 보이게 된다. 본 논문에서는 탐지모델을 위해 텍스트마이닝에서 개선된 GA(Genetic Algorithm)을 이용한 특징 추출 방법을 설계하였다. TF-IDF는 특징 추출에서 문서와 용어간의 관계를 반영하는데 사용된다. 반복과정을 통해 사전에 미리 결정된 만큼의 특징을 선택한다. 또한 탐지모델의 성능 향상을 위해 sparsity score(희소성 점수)를 사용하였다. 스팸메일 세트의 희소성이 높으면 탐지모델의 성능이 낮아져 최적화된 탐지 모델을 찾기가 어렵다. 우리는 fitness function에서 s(F)를 사용하여 희소성이 낮고 TF-IDF 점수가 높은 탐지모델을 찾았다. 또한 제안된 알고리즘을 텍스트 분류 실험에 적용하여 성능을 검증하였다. 결과적으로, 제안한 알고리즘은 공격 메일 분류에서 좋은 성능(속도와 정확도)을 보여주었다.

Spam Image Detection Model based on Deep Learning for Improving Spam Filter

  • Seong-Guk Nam;Dong-Gun Lee;Yeong-Seok Seo
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.289-301
    • /
    • 2023
  • Due to the development and dissemination of modern technology, anyone can easily communicate using services such as social network service (SNS) through a personal computer (PC) or smartphone. The development of these technologies has caused many beneficial effects. At the same time, bad effects also occurred, one of which was the spam problem. Spam refers to unwanted or rejected information received by unspecified users. The continuous exposure of such information to service users creates inconvenience in the user's use of the service, and if filtering is not performed correctly, the quality of service deteriorates. Recently, spammers are creating more malicious spam by distorting the image of spam text so that optical character recognition (OCR)-based spam filters cannot easily detect it. Fortunately, the level of transformation of image spam circulated on social media is not serious yet. However, in the mail system, spammers (the person who sends spam) showed various modifications to the spam image for neutralizing OCR, and therefore, the same situation can happen with spam images on social media. Spammers have been shown to interfere with OCR reading through geometric transformations such as image distortion, noise addition, and blurring. Various techniques have been studied to filter image spam, but at the same time, methods of interfering with image spam identification using obfuscated images are also continuously developing. In this paper, we propose a deep learning-based spam image detection model to improve the existing OCR-based spam image detection performance and compensate for vulnerabilities. The proposed model extracts text features and image features from the image using four sub-models. First, the OCR-based text model extracts the text-related features, whether the image contains spam words, and the word embedding vector from the input image. Then, the convolution neural network-based image model extracts image obfuscation and image feature vectors from the input image. The extracted feature is determined whether it is a spam image by the final spam image classifier. As a result of evaluating the F1-score of the proposed model, the performance was about 14 points higher than the OCR-based spam image detection performance.

TF-IDF의 변형을 이용한 전자뉴스에서의 키워드 추출 기법 (Keyword Extraction from News Corpus using Modified TF-IDF)

  • 이성직;김한준
    • 한국전자거래학회지
    • /
    • 제14권4호
    • /
    • pp.59-73
    • /
    • 2009
  • 키워드 추출은 정보검색, 문서 분류, 요약, 주제탐지 등의 텍스트 마이닝 분야에서 기반이 되는 기술이다. 대용량 전자문서로부터 추출된 키워드들은 텍스트 마이닝을 위한 중요 속성으로 활용되어 문서 브라우징, 주제탐지, 자동분류, 정보검색 시스템 등의 성능을 높이는데 기여한다. 본 논문에서는 인터넷 포털 사이트에 게재되는 대용량 뉴스문서집합을 대상으로 키워드 추출을 수행하여 분야별 주제를 제시할 수 있는 키워드를 추출하는 새로운 기법을 제안한다. 기본적으로 키워드 추출을 위해 기존 TF-IDF 모델을 고찰, 이것의 6가지 변형식을고안하여 이를 기반으로 각 분야별 후보 키워드를 추출한다. 또한 분야별로 추출된 단어들의 분야간 교차비교분석을 통해 불용어 수준의 의미 없는 단어를 제거함으로써 그 성능을 높인다. 제안 기법의 효용성을 입증하기 위해 한글 뉴스 기사 문서에서 추출한 키워드의 질을 비교하였으며, 또한 주제 변화를 탐지하기 위해 시간에 따른 키워드 집합의 변화를 보인다.

  • PDF

Separation of Text and Non-text in Document Layout Analysis using a Recursive Filter

  • Tran, Tuan-Anh;Na, In-Seop;Kim, Soo-Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4072-4091
    • /
    • 2015
  • A separation of text and non-text elements plays an important role in document layout analysis. A number of approaches have been proposed but the quality of separation result is still limited due to the complex of the document layout. In this paper, we present an efficient method for the classification of text and non-text components in document image. It is the combination of whitespace analysis with multi-layer homogeneous regions which called recursive filter. Firstly, the input binary document is analyzed by connected components analysis and whitespace extraction. Secondly, a heuristic filter is applied to identify non-text components. After that, using statistical method, we implement the recursive filter on multi-layer homogeneous regions to identify all text and non-text elements of the binary image. Finally, all regions will be reshaped and remove noise to get the text document and non-text document. Experimental results on the ICDAR2009 page segmentation competition dataset and other datasets prove the effectiveness and superiority of proposed method.

A Gaussian Mixture Model for Binarization of Natural Scene Text

  • Tran, Anh Khoa;Lee, Gueesang
    • 스마트미디어저널
    • /
    • 제2권2호
    • /
    • pp.14-19
    • /
    • 2013
  • Recently, due to the increase of the use of scanned images, the text segmentation techniques, which play critical role to optimize the quality of the scanned images, are required to be updated and advanced. In this study, an algorithm has been developed based on the modification of Gaussian mixture model (GMM) by integrating the calculation of Gaussian detection gradient and the estimation of the number clusters. The experimental results show an efficient method for text segmentation in natural scenes such as storefronts, street signs, scanned journals and newspapers at different size, shape or color of texts in condition of lighting changes and complex background. These indicate that our model algorithm and research approach can address various issues, which are still limitations of other senior algorithms and methods.

  • PDF

글자 수 정보를 이용한 이미지 내 글자 영역 검출 방법 (Scene Text Detection with Length of Text)

  • 김영우;김원준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.177-179
    • /
    • 2022
  • 딥러닝의 발전과 함께 합성곱 신경망 기반의 이미지 내 글자 영역 검출(Scene Text Detection) 방법들이 제안됐다. 그러나 이러한 방법들은 대부분 데이터셋이 제공하는 단어의 위치 정보만을 이용할 뿐 글자 영역이 갖는 고유한 정보인 글자 수는 활용하지 않는다. 따라서 본 논문에서는 글자 수 정보를 학습하여 효과적으로 이미지 내의 글자 영역을 검출하는 모듈을 제안한다. 제안하는 방법은 간단한 합성곱 신경망으로 구성된 이미지 내 글자 영역 검출 모델에 글자 수를 예측하는 모듈을 추가하여 학습을 진행하였다. 글자 영역 검출 성능 평가에 널리 사용되는 ICDAR 2015 데이터셋을 통해 기존 방법 대비 성능이 향상됨을 보였고, 글자 수 정보가 글자 영역을 감지하는 데 유효한 정보임을 확인했다.

  • PDF

비디오 영상에서 시공간적 문자영역 제거방법 (Spatiotemporal Removal of Text in Image Sequences)

  • 이창우;강현;정기철;김항준
    • 전자공학회논문지CI
    • /
    • 제41권2호
    • /
    • pp.113-130
    • /
    • 2004
  • 많은 시각적 정보를 포함한 비디오 데이터들의 자동화된 처리 기술 중, 비디오 데이터들의 시청자적인 정보를 보강시키고, 부가적인 정보를 첨가하기 위한 일환으로 자막을 삽입하는 경우가 많다. 이러한 자막은 때로 영상자료의 재사용성(reusability)을 저해하고, 원 영상을 훼손하는 경우가 발생한다. 본 논문에서는 영상의 재사용성을 높이고 원 영상 복원을 위해 Support Vector Machines(SVM)과 시공간적 영상복원 방법(spatiotemporal restoration)을 이용한 비디오 영상에서의 자동 문자 검출과 제거 방법을 제안한다. 연속적인 두 프레임 이상의 영상을 입력받아, 현재 프레임 영상에서 SVM을 이용하여 문자 영역을 검출한 다음, 검출된 문자 영역을 제거하고, 문자 영역에 의해 가려졌던 원 영상을 복원하기 위한 두 단계- 시간적 복원(temporal restoration)과 공간적 복원(spatial restoration)접근방법을 제안한다. 제안된 복원 방법은 글자 모션(text motion) 정보와 두 영상의 배경 차이(background difference)를 이용하여 영상을 그 특징에 따라 분류하고, 각 영상의 특징에 맞는 복원 방법을 적용한다. 제안된 방법은 다양한 종류의 영상에서 문자뿐만 아니라 관심의 대상이 되는 객체의 자동 검출 및 복원 등 다양한 응용분야를 포함한다.

단어와 문장의 의미를 고려한 비속어 판별 방법 (Swearword Detection Method Considering Meaning of Words and Sentences)

  • 이명호;임명진;신주현
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.98-106
    • /
    • 2020
  • 현재 인터넷 사용자가 증가하면서 비속어 사용이 무분별하게 증가하고 있다. 이에 따른 청소년들의 사이버폭력도 매우 심각하게 증가하고 있으며 그중에서도 사이버 언어폭력이 가장 심각하게 대두되고 있다. 사이버 언어폭력을 근절하기 위해 비속어 판별 연구가 계속 진행되고 있으나 단어의 의미와 문맥의 흐름을 보고 비속어를 판별하는 방법은 정확도가 미흡한 실정이다. 따라서 본 논문에서는 고의로 변형한 비속어와 비속어로 잘못 판별된 표준어를 문맥의 흐름을 보고 정확하게 판별할 수 있도록 FastText 모델과 LSTM 모델을 활용하여 비속어를 판별하는 방법을 제안한다.