본 논문은 효율적인 한국어 구문분석을 위해 먼저 구묶음 분석(Chunking) 과정을 적용할 것을 제안한다. 한국어는 어순이 자유롭지만 명사구와 동사구에서는 규칙적인 어순을 발견할 수 있으므로, 규칙을 이용한 구묶음(Chunking) 과정의 적용이 가능하다. 하지만, 규칙만으로는 명사구와 동사구의 묶음에 한계가 있으므로 실험 말뭉치에서 어휘 정보를 찾아내어 구묶음 과정(Chunking)에 적용한다. 기존의 구문분석 방법은 구구조문법과 의존문법에 기반한 것이 대부분인데, 이러한 구문분석은 다양한 결과들이 분석되는 동안 많은 시간이 소요되며 이 중 잘못된 분석 결과를 가려서 삭제하기(pruning)도 어렵다. 따라서 본 논문에서 제시한 구묶음(Chunking) 과정을 적용함으로써, 잘못된 구문분석 결과를 미연에 방지하고 의존문법을 적용한 구문분석에 있어서 의존관계의 설정 범위(scope)도 제한할 수 있다.
본 논문은 효율적인 한국어 구문분석을 위해 먼저 구묶음 분석(Chunking) 과정을 적용할 것을 제안한다. 한국어는 어순이 자유롭지만 명사구와 동사구에서는 규칙적인 어순을 발견할 수 있으므로, 규칙을 이용한 구묶음(Chunking) 과정의 적용이 가능하다 하지만, 규칙만으로는 명사구와 동사구의 묶음에 한계가 있으므로 실험 말뭉치에서 어휘 정보를 찾아내어 구묶음 과정(Chunking)에 적용한다. 기존의 구문분석 방법은 구구조문법과 의존문법에 기반한 것이 대부분인데, 이러한 구문분석은 다양한 결과들이 분석되는 동안 많은 시간이 소요되며 이 중 잘못된 분석 결과를 가려서 삭제하기(pruning)도 어렵다. 따라서 본 논문에서 제시한 구묶음(Chunking) 과정을 적용함으로써, 잘못된 구문분석 결과를 미연에 방지하고 의존문법을 적용한 구문분석에 있어서 의존관계의 설정 범위(scope)도 제한할 수 있다.
한국어나 일본어와 같이 부분 어순 자유 언어에서는 규칙 기반 방법이 구 단위화에 있어서 매우 유용한 방법이며, 실제로 잘 발달된 조사와 어미를 활용하면 소수의 규칙만으로도 여러 가지 기계학습 기법들만큼 높은 성능을 보일 수 있다. 하지만, 이 방법은 규칙의 예외를 처리할 수 있는 방법이 없다는 단점이 있다. 예외 처리는 자연언어처리에서 매우 중요한 문제이며, 기억 기반 학습이 이 문제를 효과적으로 다룰 수 있다. 본 논문에서는, 한국어 단위화를 위해서 규칙 기반 방법과 기억 기반 학습을 결합하는 방법을 제시한다. 제시된 방법은 우선 규칙에 기초하고, 규칙으로 추정한 단위를 기억 기반 학습으로 검증한다. STEP 2000 말뭉치에 대한 실험 결과, 본 논문에서 제시한 방법이 규칙이나 여러 기계학습 기법을 단독으로 사용하였을 때보다 높은 성능을 보였다. 규칙과 구 단위화에 가장 좋은 성능을 보인 Support Vector Machines의 F-score가 각각 91.87과 92.54인데 비하여, 본 논문에서 제시된 방법의 최종 F-score 는 94.19이다.
In this paper, we present an empirical study for improving the Korean text chunking based on machine learning and feature set selection approaches. We focus on two issues: the problem of selecting feature set for Korean chunking, and the problem of alleviating the data sparseness. To select a proper feature set, we use a heuristic method of searching through the space of feature sets using the estimated performance from a machine learning algorithm as a measure of "incremental usefulness" of a particular feature set. Besides, for smoothing the data sparseness, we suggest a method of using a general part-of-speech tag set and selective lexical information under the consideration of Korean language characteristics. Experimental results showed that chunk tags and lexical information within a given context window are important features and spacing unit information is less important than others, which are independent on the machine teaming techniques. Furthermore, using the selective lexical information gives not only a smoothing effect but also the reduction of the feature space than using all of lexical information. Korean text chunking based on the memory-based learning and the decision tree learning with the selected feature space showed the performance of precision/recall of 90.99%/92.52%, and 93.39%/93.41% respectively.
Recently speech texts have been increasingly used for English education because of their various advantages as language teaching and learning materials. The purpose of this paper is to analyze speech texts in a corpus-based lexical approach, and suggest some productive methods which utilize English speaking or writing as the main resource for the course, along with introducing the actual classroom adaptations. First, this study shows that a speech corpus has some unique features such as different selections of pronouns, nouns, and lexical chunks in comparison to a general corpus. Next, from a collocational perspective, the study demonstrates that the speech corpus consists of a wide variety of collocations and lexical chunks which a number of linguists describe (Lewis, 1997; McCarthy, 1990; Willis, 1990). In other words, the speech corpus suggests that speech texts not only have considerable lexical potential that could be exploited to facilitate chunk-learning, but also that learners are not very likely to unlock this potential autonomously. Based on this result, teachers can develop a learners' corpus and use it by chunking the speech text. This new approach of adapting speech samples as important materials for college students' speaking or writing ability should be implemented as shown in samplers. Finally, to foster learner's productive skills more communicatively, a few practical suggestions are made such as chunking and windowing chunks of speech and presentation, and the pedagogical implications are discussed.
최대 엔트로피 모델(maximum entropy model)은 여러 가지 자연언어 문제를 학습하는데 성공적으로 적용되어 왔지만, 두 가지의 주요한 문제점을 가지고 있다. 그 첫번째 문제는 해당 언어에 대한 많은 사전 지식(prior knowledge)이 필요하다는 것이고, 두번째 문제는 계산량이 너무 많다는 것이다. 본 논문에서는 텍스트 단위화(text chunking)에 최대 엔트로피 모델을 적용하는 데 나타나는 이 문제점들을 해소하기 위해 새로운 방법을 제시한다. 사전 지식으로, 간단한 언어 모델로부터 쉽게 생성된 결정트리(decision tree)에서 자동적으로 만들어진 규칙을 사용한다. 따라서, 제시된 방법에서의 최대 엔트로피 모델은 결정트리를 보강하는 방법으로 간주될 수 있다. 계산론적 복잡도를 줄이기 위해서, 최대 엔트로피 모델을 학습할 때 일종의 능동 학습(active learning) 방법을 사용한다. 전체 학습 데이터가 아닌 일부분만을 사용함으로써 계산 비용은 크게 줄어 들 수 있다. 실험 결과, 제시된 방법으로 결정트리의 오류의 수가 반으로 줄었다. 대부분의 자연언어 데이터가 매우 불균형을 이루므로, 학습된 모델을 부스팅(boosting)으로 강화할 수 있다. 부스팅을 한 후 제시된 방법은 전문가에 의해 선택된 자질로 학습된 최대 엔트로피 모델보다 졸은 성능을 보이며 지금까지 보고된 기계 학습 알고리즘 중 가장 성능이 좋은 방법과 비슷한 성능을 보인다 텍스트 단위화가 일반적으로 전체 구문분석의 전 단계이고 이 단계에서의 오류가 다음 단계에서 복구될 수 없으므로 이 성능은 텍스트 단위화에서 매우 의미가 길다.
This study investigates issues in relation to text segmenting, in particular, line breaks in Korean language textbooks. Research on L1 and L2 reading has shown that readers process texts by chunking (grouping words into phrases or meaningful syntactic units) and, therefore, phrase-cued texts are helpful for readers whose syntactic knowledge has not yet been fully developed. In other words, it would be important for language textbooks to avoid awkward syntactic divisions at the end of a line, in particular, those textbooks for beginners and intermediate level learners. According to our analysis of a number of major Korean language textbooks for beginner-level learners, however, many textbooks were found to display line-breaks of awkward syntactic division. Moreover, some textbooks displayed frequent instances where a single word (or eojeol in the case of Korean) is split between different lines. This can hamper not only learners' learning of the rules of spaces between eojeols in Korean, but also learners' development in automatic word recognition, which is an essential part of reading processes. Based on the findings of our textbook analysis and of existing research on reading, this study suggests ways to overcome awkward line-breaks in Korean language textbooks.
In this paper, a decision-tree-based Markov model for phrase break prediction is proposed. The model takes advantage of the non-homogeneous-features-based classification ability of decision tree and temporal break sequence modeling based on the Markov process. For this experiment, a text corpus tagged with parts-of-speech and three break strength levels is prepared and evaluated. The complex feature set, textual conditions, and prior knowledge are utilized; and chunking rules are applied to the search results. The proposed model shows an error reduction rate of about 11.6% compared to the conventional classification model.
Park과 Zhang은 최대 엔트로피 모델(maximum entropy model)을 실제 자연언어 처리에 적용함에 있어서 나타날 수 있는 여러가지 문제를 해결하기 위한 최대 엔트로피 모델(maximum entropy boosting model)을 제시하여 문서 단위화(text chunking)에 성공적으로 적용하였다. 최대 엔트로피 부스팅 모델은 쉬운 모델링과 높은 성능을 보이는 장점을 가지고 있다. 본 논문에서는 최대 엔트로피 부스팅 모델을 영어 전치사 접속 모호성 해소에 적용한다. Wall Street Journal 말뭉치에 대한 실험 결과, 아주 작은 노력을 들였음에도 84.3%의 성능을 보여 지금까지 알려진 최고의 성능과 비슷한 결과를 보였다.
Son, Jeong-Woo;Yoon, Heegeun;Park, Seong-Bae;Cho, Keeseong;Ryu, Won
ETRI Journal
/
제36권5호
/
pp.704-713
/
2014
Most natural language processing tasks depend on the outputs of some other tasks. Thus, they involve other tasks as subtasks. The main problem of this type of pipelined model is that the optimality of the subtasks that are trained with their own data is not guaranteed in the final target task, since the subtasks are not optimized with respect to the target task. As a solution to this problem, this paper proposes a consolidation of subtasks for a target task ($CST^2$). In $CST^2$, all parameters of a target task and its subtasks are optimized to fulfill the objective of the target task. $CST^2$ finds such optimized parameters through a backpropagation algorithm. In experiments in which text chunking is a target task and part-of-speech tagging is its subtask, $CST^2$ outperforms a traditional pipelined text chunker. The experimental results prove the effectiveness of optimizing subtasks with respect to the target task.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.