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Most natural language processing tasks depend on the 
outputs of some other tasks. Thus, they involve other tasks 
as subtasks. The main problem of this type of pipelined 
model is that the optimality of the subtasks that are 
trained with their own data is not guaranteed in the final 
target task, since the subtasks are not optimized with 
respect to the target task. As a solution to this problem, 
this paper proposes a consolidation of subtasks for a target 
task (CST2). In CST2, all parameters of a target task and 
its subtasks are optimized to fulfill the objective of the 
target task. CST2 finds such optimized parameters 
through a backpropagation algorithm. In experiments in 
which text chunking is a target task and part-of-speech 
tagging is its subtask, CST2 outperforms a traditional 
pipelined text chunker. The experimental results prove the 
effectiveness of optimizing subtasks with respect to the 
target task. 
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I. Introduction 

Most natural language processing (NLP) tasks consist of 
many pipelined subtasks. These subtasks process their own 
information and are often performed independently. For 
instance, a natural-language parser takes, in general, a tokenizer 
and a part-of-speech (POS) tagger as its subtasks, and these 
subtasks are performed sequentially and independently prior to 
the parser. The problem of this pipelined structure is that the 
errors at the subtasks are propagated to the final target task; 
thus, they crucially affect the performance of the task. 

A general solution to this problem is to improve each subtask. 
Even though the subtasks are imperfect, they are optimized to 
perform best in their environment. However, such a subtask 
optimization does not guarantee the optimal performance of the 
target task. The objective of a subtask does not coincide with 
that of the target task in many cases. For instance, let us 
consider a POS tagger used as a subtask of text chunking. 
Normally, a POS tagger tries to assign a POS tag to each word 
in a sentence as correctly as possible. Thus, it distinguishes 
singular nouns, plural nouns, and proper nouns. However, the 
nouns need not be distinguished in text chunking, since their 
roles are similar in identifying a noun phrase. 

Some previous studies have taken the relation among 
subtasks into account [1]–[3]. One way to do this is to train 
subtasks jointly. Florian and Ngai [4] proposed multi-
dimensional transformation–based learning. They focused on 
the joint learning of closely related NLP tasks assuming that 
their order and independence are difficult to determine. On the 
other hand, a reuse model of subtasks has been proposed by 
Collobert and Weston [5]. They assumed that features that are 
useful for one task might also be useful for other related tasks. 
They therefore proposed a convolutional neural network to 
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reuse subtasks trained for one task. However, the subtasks in 
these studies optimize their own objectives, not the objective of 
the final target task. 

This paper proposes a consolidation of subtasks for a target 
task (CST2). This method assumes that subtasks are cascaded 
to form a pipeline. That is, the output of the subtasks is used as 
an input of the target task. The key idea of CST2 is that all 
subtasks and the target task should be optimized with respect to 
the objective of the target task. To achieve this goal, CST2 
optimizes the subtasks and target task iteratively. All tasks are 
initially trained with their own objectives. That is, the 
parameter values of not only the target task but also subtasks in 
the pipeline are determined to optimize its own objective. They 
are then adjusted to minimize the errors of the target task using 
a backpropagation algorithm. The errors at the target task are 
back propagated to the subtasks, and the subtasks adjust their 
parameters to minimize the propagated errors. This process 
iterates until the parameters converge. 

CST2 is evaluated using a well-known NLP task; namely, 
text chunking. POS tagging is used as a subtask of text 
chunking. The experimental results on CoNLL-2000 shared-
task data show that CST2 achieves a higher performance than 
the sequential model in which the output of POS tagging 
becomes an input of text chunking. CST2 outperforms even a 
text chunker trained with true POS tags. This result proves the 
importance of optimization of subtasks with respect to the 
target task. 

The remainder of this paper is organized as follows. Section 
II reviews other works related to joint learning in the NLP field. 
Section III offers an overall description of CST2. Section IV 
describes how a target task and subtasks are trained in CST2, 
and the experimental results are then given in Section V. Finally, 
some concluding remarks are provided in Section VI. 

II. Related Works 

NLP tasks naturally involve many other tasks as their 
subtasks because tasks depend on one another. That is, the 
output of a task often becomes an input of other tasks, and vice 
versa. According to [6], joint learning of tasks results in better 
performance than a single independent learning of each task, 
since the information relevant to one task may be relevant to 
other related tasks. Therefore, a number of techniques have 
been explored to learn multiple tasks simultaneously [7]–[8]. 
These techniques are categorized into two types: feature 
sharing and result sharing. 

The feature-sharing type assumes that the useful features for 
one task are also valuable for other related tasks [4]. Therefore, 
the joint learning of tasks is conducted through feature sharing 
among tasks. Collobert and Weston [5] proposed a unified 

architecture for NLP tasks based on deep neural networks. In 
this architecture, a task generates word features at the lookup-
table layer. Other tasks that are related with the task then reuse 
the same word features to share information among them. 
According to their experiments, the performance of a task is 
improved when it borrows the word features from another task. 

On the other hand, the result-sharing type assumes that some 
useful features for a task are generated from the output of other 
related tasks. Hatori and others [9] proposed an incremental 
joint approach for word segmentation, POS tagging, and 
dependency parsing of Chinese. In this study, a unified feature 
set is used to learn the three tasks jointly, and the unified feature 
set is a composition of features from each task. As a result, each 
task can utilize the information generated from other tasks 
through a unified feature set. Goldberg and Tsarfaty [10] 
applied a similar idea to information sharing among 
morphological segmentation, POS tagging, and syntactic 
parsing for Hebrew. In addition, Watanabe and others [11] also 
proposed a similar method for learning argument role labeling 
and predicate sense disambiguation jointly. 

Such information sharing allows substantial gain in the 
performance of joint tasks. However, many NLP tasks are 
structured as a pipelined model; that is, the target task in the 
pipelined model is a task that takes outputs of other subtasks as 
its input. The output of the target task is not fed to the subtasks. 
The main problem of this structure is that the errors made by 
the subtasks are propagated to the target task, since subtasks are 
usually not perfect. Khalid and others [12] reported this 
phenomenon in the relation of named-entity recognition (NER) 
and named-entity normalization (NEN). They found that most 
errors of NEN come from its subtask, NER. The most 
common way to prohibit error propagation is to optimize all 
subtasks as perfectly as possible [13]–[14]. However, owing to 
a disagreement in the objectives of the target task and its 
subtasks, such optimization of the subtasks does not guarantee 
an optimal performance of the target task. 

III. Consolidation of Subtask for Target Task 

Figure 1 shows the architecture of CST2 in which one 

subtask is assumed. Let 1 2 NS w w w   be an input sentence. 

Each word wi in S is represented as a feature vector, xi. Assume 

that both the final target task and its subtasks are classification 

problems. For simplicity, we also assume that they are all 

binary-class classification problems. 
CST2 processes each word in the sentence sequentially. The 

subtask g first classifies xi, and the classification result is then 
fed forward to the target task f. Then, f determines the final 
classification of xi using the outputs of g for xi and xi–1. For  
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Fig. 1. Architecture of CST2. 
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instance, let f be the text chunking and g be the POS tagging.  
A POS tagger first determines the POS tag of a given word, 
and the POS tags of the word and its previous word are then 
given to the text chunking as an input. Finally, the chunk label 
of the word is determined by the text chunker using the input. 

If a function ( )cf   is given to solve the target task, then 

the class of xi, 
*
iy , is determined by  

 *

{ 1, 1}
argmax [ ; ( )] ,i c i

y
y y f  

  
  x  

where θc and ( )i x  are the parameter and feature vectors of  
f, respectively. The feature vector consists of the current word, 
xi, the class label of the previous word, xi–1, and the outputs of 
the subtask, g, for xi–1 and xi. That is, when a symbol   
represents feature concatenation, the feature vector ( )i x is 

        1 1; ; ; ,i i c i s i s if g g        x x x x x   (1) 

where θs is the parameter of g. Even if f is restricted to depend 
on the result of one previous word in this figure, it can be 
generalized to depend on the previous k words without a loss of 
generality. In addition, this multi-layered architecture can allow 
more subtasks between f and g. 

IV. Training CST2 

1. Parameter Optimization 

The objective of CST2 is to maximize the performance of the 
target task f. Thus, it optimizes both parameter θc of f and 
parameter θs of g by minimizing the errors of the target task f. 
That is, though subtask g has its own objective, it is also 
optimized with respect to f. 

Formally, when 1 1 2 2 | | | |{( , ), ( , ), , ( , )}D DD y y y x x x  is a 

training set of f, the optimal parameter of the final task f, *
c , is 

determined by minimizing its empirical risk. That is, 

| |
*

Θ
argmin  ( , [ ; ( )]),

c c

D

c i c i
i

L y f


  


  x           (2) 

where Θc  is a set of all possible θc. Since subtask g should be 
optimized with respect to f, its optimal parameter *

s  is also 

obtained by minimizing the risk of f. That is,  

    
| |

*

Θ
argmin  ( , [ ; ( )]),

s s

D

s i c i
i

L y f


  


  x          (3) 

where θs is a set of all possible θs. 
The CST2 adopts a stochastic gradient descent approach to 

obtain *
c  and *

s  in equations (2) and (3). Algorithm 1 
shows a pseudocode for the training of CST2. It first initializes 
the parameters (0)

c  and (0) .s  Both (0)
c  and (0)

s  are 
initialized independently to best perform their tasks f and g with 
their own training data. The CST2 then updates θc and θs by 
adjusting them iteratively to training set D. The main loop of 
this algorithm iterates over the training examples in D. At time t, 
each input xi is propagated through the architecture, and its 
output is predicted. In this process, to consider sequential NLP 
tasks, subtask g first classifies all input i Dx  using ( )t

c , 
and the target task f then predicts the class of i Dx  using 
both ( )t

c  and the results of g. After that, the error of f defined 
with loss L is propagated backward. The parameters ( )t

c  and  
( )t
s are updated in the direction of the gradient descent of the 

loss. This process iterates until the parameters converge. 
We assume that the error of a training example (xi, yi) is 

defined by the square loss function. That is,  

21
( , ( ; ( )) ( ( ; ( )) )

2
.i c i c i iL y f f y    x x  

Algorithm 1 Training CST2 with a stochastic gradient descent. 

Input: 
D = {(x1, y1), (x2, y2) , … , (x|D|, y|D|)} 
 η = learning rate 

Body: 
Initialize t : = 0. 
Initialize parameters (0)

c  and ( ).t
s  

repeat 
for each (xi, yi)  D do 

Propagate the input forward. 
- Execute ( ); )( .t

isg  x  

- Execute ( ) ; ( ))( .t
c if   x  

Propagate the error backward 
- ( 1) ( ): ( ).t t

c c cL       

- ( 1) ( ): ( ).t t
s s sL       

if both θc and θs converge, then 
Return ( 1) ( 1)( , ).t t

c s    

end if 
t : = t + 1. 

end for  
until both θc and θs converge. 
Return ( ) ( ), ).( t t

c s   

 
In addition, we restrict both f and g to a logistic function. 



ETRI Journal, Volume 36, Number 5, October 2014 Jeong-Woo Son et al.   707 
http://dx.doi.org/10.4218/etrij.14.2214.0035 

That is, 

1
( ; ( )) ,

1 exp( ( ))

1
( ; ) .

1 exp( )

c i T
c i

s i T
s i
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
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
 


 
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Note that θc is a vector whose dimension is equivalent to that of 

( )i x . When l is the dimension of θc, the gradient of 

( , [ ; ( )])i c iL y f   x with respect to θc is given as  

( ) , , , .
(1) (2) ( )c

c c c

L L L
L

l


  
   

      
 

Since f is a logistic function, the derivative 
( )c

L

j



 is  

  2( ; ( )) ( ; ( ))
( )

exp( ( )) ( )

,( )

c i i c i
c

c i i j

i j

L
f y f

j
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

  

 




  


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 
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(4)

 

where ( )i j x  is the jth feature of ( )i x  and is  

  2( ; ( )) ( ; ( )) exp( ( )).c i i c i c if y f          x x x  

The parameter θs is also a vector whose dimension is the 

same as that of xi. It should be adjusted by the gradient descent 

of ( , [ ; ( )])i c iL y f   x . Thus, ( )sL   should be computed, 

but ( )sL   cannot be obtained directly since θs influences f  

through g. We therefore use the chain rule. Then, 
( )s

L

j



 can 

be written as  

( ; )
.

( ) ( ; ) ( )
s i

s s i s

gL L

j g j


  

 
 
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x

x
          (5) 

The second term of this equation can be obtained in a similar 

way as 
( )c

L

j



. Therefore, we have  

2( ; )
( ; ) exp( )

(
,

)
Ts i

s i s i ij
s

g
g

j


 




   


x
x x x        (6) 

where xij is the jth feature value of xi. 

The first term of (5) can be obtained using the definition of 

( , )i s x in (1). Since the derivative of L is computed with 

respect to ( ; ),s ig  x  both 1( ; ( ))c if   x  and 1( ; )s ig  x  

are regarded as a constant for all xi. Therefore, they are 

eliminated from .
( ; )s i

L

g 


 x
 As a result,  

 

 

2( ; ( )) ( ; ( ))
( ; )

exp( ( )) ( )

,

c i i c i
s i

T
c i c

c

L
f y f

g

r

r

   


  
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
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where ( )c r  is the rth element of θc that corresponds to  

( ; )s ig  x  in (1). From (6) and (7), 
( )s

L

j



 is  

2( ; ) exp( ) ( ).
( )

T
s i s i ij c

s

L
g r

j
   




     


x x x  

2. Initial Values and Multiple Classes 

Since CST2 estimates the best *
c  and *

s  by a kind of 
backpropagation procedure, the initial values, (0)

c  and (0)
s , 

can be given randomly [15]. However, decent starting values 
for θc and θs not only allow CST2 to converge fast but also to 
converge to a better performance when many local optima 
exist. Therefore, we initialize θs by training task g sequentially 
with its own training data. 

Assume that there is another separate training set 

1 1 2 2 | | | |' {( , ), ( , ), , ( , )}D DD y y y       x x x  for subtask g, where 

iy  is the class label of ix  in g. The initial value (0)
s  for 

parameter θs is then obtained by minimizing the empirical risk 

of g. That is, 
(0)

( , )
Θ

argmin ( , ( , )).
i i

s s

s i s iy D
L y g


 

  


   x
x  

This (0)
s  can also be obtained through a gradient descent 

approach. Due to this initialization step, CST2 has another 

advantage; that is, models for subtasks can take benefits from 

its own datasets separated from the dataset for the target task.  
If subtask g is a multi-class classification task, then the node  

 

 

Fig. 2. CST2 for a multi-class subtask. 
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for g in Fig. 1 should be changed slightly, as shown in Fig. 2. 
Assume that g has k classes. The subtask layer then consists of 
k nodes. Each )1(jg j k   in this layer is a logistic function 
that classifies the jth class based on a one-versus-all approach. 
Then gj, whose output is largest, is determined to be ( ; )s ig  x . 
That is,  

1
( ; ) argmax ( ; ).s i j s i

j k
g x g x 

 
            (8) 

If the target task f is a multi-class task, then the output layer 
is also changed in the same manner as the multi-class 
subtask. 

V. Characteristics of CST2  

CST2 has mainly two characteristics compared to other 
learning techniques such as joint learning, multi-task learning, 
transfer learning, and so on. First, in CST2, all the parameters  
for subtasks are actually re-estimated to support the target  
task through the backpropagation. Let’s consider learning 
techniques with constraints, such as a constrained conditional 
model (CCM) [16]–[17]. CCM constructs subtasks 
independently and then combines all the tasks for the target 
task by using predefined constraints. Thus, the information 
from subtasks is selectively delivered to the target task. Since 
this selectivity is adopted by using constraints, CCM need not 
make any changes to subtasks to reflect information required 
for use with the target task. However, in CST2, the information 
required by the target task is distributed to all subtasks by the 
backpropagation algorithm, and then, all parameters of 
subtasks are actually re-estimated.  

Second, CST2 optimizes all subtasks only for the benefit of 
the target task. For several tasks, CST2 tries to achieve a 
maximum performance only on the target task, even though 
models corresponding to the subtasks sacrifice their own 
performance levels.  

This characteristic is addressed by comparing the proposed 
method with multilayer sequence labeling (MSL) proposed by 
Azuma and Matsumoto [18]. MSL was initially designed with 
the same motif of CST2 to consider pipelined tasks. However, 
since MSL attempts to achieve maximum performances over 
all tasks, its objective function still considers performances on 
subtasks. That is, when two tasks are given, MSL’s objective 
function can be defined as minimizing L1 + L2, where L1 and 
L2 are loss functions for given tasks. On the other hand, CST2 
defines its objective function as minimizing L2 if L2 
corresponds to the loss function of the target task. Due to this 
distinguished difference of CST2, it is more appropriate for a 
system that produces the output from the target task supported 
by several subtasks. 

VI. Experiments 

1. Dataset 

An evaluation of CST2 is conducted by applying it to a well-
known NLP task; text chunking.1) The goal of text chunking is 
to identify the non-recursive portions of various phrase types. 
Two kinds of information are, in general, used as the input of 
text chunking. One is lexical information, and the other is POS 
tagging information. Thus, POS tagging should be performed 
prior to text chunking and is regarded as a subtask of text 
chunking. 

We use CoNLL-2000 shared task data as the dataset for text 
chunking. This dataset is constructed using a portion of the 
Wall Street Journal (WSJ) corpus. Table 2 shows simple 
statistics of the data sets. Sections 15–18 of the WSJ corpus are 
used as the training set, whereas section 20 is used as the test 
set. The training and test sets are composed of 211,727 words 
and 47,377 words, respectively. A chunk label is attached to 
each word using the IOB model [19]. For instance, B-NP is 
attached to the first word of a noun phrase, while other words 
in the noun phrase have I-NP as their chunk labels. Since there 
are eleven phrase types in the WSJ corpus, this dataset has 23 
chunk labels, including chunk label O for indicating that the 
word is not a part of any phrase. 

Most features for text chunking are borrowed from [20] and 
[21]. Table 1 summarizes the features used in the experiments. 
In this table, wi and pi denote the lexicon and POS tag for the 
ith word in a sentence, respectively. Lexicons and POS tags of 
word wi and its surrounding words, wi+2, are used as features.  
 

Table 1. Features for text chunking. 

Feature type Description 

Word feature 2 1 1 2 1 1, , , , , ,i i i i i i i i iw w w w w w w w w        

Suffix Suffixes of wi (up to length 5) 

Lexical feature 

Whether wi contains capitals 

Whether wi has a number 

Whether wi has a hyphen 

Whether wi is all capitals 

Whether wi starts with a capital and is located in the 

middle of a sentence 

POS 2 1 1 2 1 1, , , , , ,i i i i i i i i ip p p p p p p p p        

Word + POS 1 1 1 1, , , , ,i i i i i i i i i i i iw p w p w p p w p w p w          

Chunk + POS 1i ic p   

Chunk 1 2 1i i ic c c     

Chunk + Word 1i ic w   

 
                                                               

1) In all experiments, we used the same settings with [13] basically. 
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Table 2. Simple statistics of experimental data. 

  Training Test 

Section 0–18 22–24 

# of sentences 38,219 5,462 
POS 

Tagging 
# of words 912,344 129,654 

Section 15–18 20 

# of sentences 8,936 2,012 Chunking 

# of words 211,727 47,377 

 

Table 3. Features for POS tagging. 

Feature type Description 

Word feature 
3 2 1 1 2 3

2 1 1 1 1 2

, , , , , , ,

, , ,
i i i i i i i

i i i i i i i i

w w w w w w w

w w w w w w w w
     

        
 

Prefix Prefixes of wi (up to length 9) 

Suffix Suffixes of wi (up to length 9) 

Lexical feature 

Whether wi contains capitals 

Whether wi has a number 

Whether wi has a hyphen 

Whether wi is all capitals 

Whether wi starts with a capital and is located in 

the middle of a sentence 

POS 3 2 1 3 2 2 1, , , ,i i i i i i ip p p p p p p         

Word + POS 3 2 1, ,i i i i i ip w p w p w      

 

 
However, only the chunk labels of previous words are used as 
features since text chunking works sequentially. 

An independent dataset can be used for initializing θs of 
subtask g. Since POS tagging is our subtask, a standard WSJ 
corpus is used to train a POS tagger. The dataset is divided into 
training and test sets as in [22]–[23]. The training set is 
constructed using sections 0–18, and the test set is from 
sections 22–24. Table 2 shows simple statistics of the sets. The 
training set contains 38,219 sentences and 912,344 words, 
while the test set has 5,462 sentences and 129,654 words. For 
POS labels, 45 POS tags used in the Penn Treebank are 
adopted. Thus, the number of nodes in Fig. 1 is also 45. That is, 
k = 45. The features for POS tagging are those used in [24]. 
Table 3 explains the features. The lexicons of the current and 
surrounding words, as well as POS tags of previous words, are 
used as features. The 3 words of the current word are used as 
surrounding words. 

In each of the experiments, user parameter η in Algorithm 1 
is heuristically set to 0.09. The performance of text chunking is 
measured based on the precision, recall, and F-score, whereas 
that of POS tagging is measured based on the accuracy. 

200×103 

Fig. 3. CST2 for a multi-class subtask: (a) text chunking and (b) 
POS tagging performances. 
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2. Experimental Results 

Figure 3 shows the performance of CST2. The figure shows 
how the performances of the target task and subtask change 
according to the iteration counter in Algorithm 1, (t). Figure 
3(a) demonstrates that the F-score of the target task, text 
chunking, is improved monotonically as t increases. At t = 0, 
both text chunking and POS tagging are independently trained 
with their own datasets. As a result, text chunking shows a very 
high   F-score of 91.97 in spite of its initial state. The F-score 
then increases up to 93.81, and becomes stabilized after t = 6 ×	
105. Text chunking converges completely at t = 106. On the 
other hand, the performance of the subtask decreases rapidly as 
t increases. As shown in Fig. 3(b), the accuracy of POS tagging 
is 97.23% at t = 0, but it decreases for large t. It becomes 
45.11% when t ≥ 2 ×	105. 

To see why the F-score of text chunking is improved 
whereas the accuracy of POS tagging becomes worse as t 
increases, we compare CST2 with two baselines. One is CGP, 
which is a logistic classifier trained with gold standard POS  
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Table 4. Text chunking performance. 

Methods Precision Recall F-score 

CST2 93.15% 94.49% 93.81 

CGP 92.33% 93.79% 93.05 

CIP 91.23% 92.71% 91.97 

 

Table 5. POS tags predicted by CST2 for nouns. 

Predicted tags 
Methods 

NN NNS NNP NNPS 

NN 6,480 0 3 0 

NNS 2,883 4 20 1 

NNP 4,141 0 361 11 
True tags 

NNPS 127 0 1 2 

 

 
tags, and the other is CIP, which is also a logistic classifier but 
trained with POS tags supplied by an independently trained 
POS tagger. Table 4 shows the performances of CST2, CGP, 
and CIP. CIP achieves the worst F-score of 91.97, while CST2 
shows the best F-score of 93.81. Since the POS tags supplied 
by a trained POS tagger are used as a part of the input for CIP, 
some errors are included in the POS tags. These errors are the 
main contributing factor as to why CIP has the worst 
performance. 

The same errors of the POS tagger are also propagated to 
CST2, but because these errors are resolved by the 
backpropagation step, they do not have a negative effect on it. 
The parameter of the POS tagger is adjusted to minimize the 
errors of text chunking in CST2. As a result, the F-score of 
CST2 is higher than even that of CGP. CGP shows an F-score 
of just 93.05 even if it uses gold standard POS tags. The main 
reason for the lower performance of CGP than CST2 is the 
over-specification of the POS tags. That is, some POS tags do 
not provide any information for chunk classification. For 
instance, there are four POS tags for nouns in the WSJ corpus: 
NN (singular noun), NNS (plural noun), NNP (singular proper 
noun), and NNPS (plural proper noun). However, there is only 
one NP tag for noun phrases in text chunking. All nouns 
become a part of NP no matter what their POS tag is. Such 
over-specification of POS tags, therefore, becomes redundant 
information for text chunking. Table 5 proves this. This table 
reports the predicted POS tags by CST2 for nouns when it 
shows the best performance. Although true POS tags for nouns 
vary, CST2 considers most of them to be NN. Therefore, the 
performance of POS tagging in CST2 may be extremely low. 
The accuracy of the POS tagger is actually just 45.11%, as  

 

Fig. 4. Performance of random initialized CST2 according to the 
number of subtask nodes. 
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Fig. 5. Effect of supervised initialization of θs. 
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shown in Fig. 3(b). However, the fact that CST2 outperforms 
both CGP and CIP proves that specific discrimination of POS 
tags is not needed for text chunking. 

Since the number of POS tags is 45, we have 45 nodes for 
POS tagging. That is, k = 45 in Fig. 2. If some POS tags are 
simply redundant information, then the performance of CST2 
will be affected by the number of nodes. Figure 4 shows the  
F-score of CST2 with various values of k. These F-scores are 
obtained after initializing both 0

c  and 0
s  randomly owing 

to the disagreement between k and the number of POS tags. 
Since different initial values can result in different local optima, 
the F-scores in this figure are the average of three trials. The 
best F-score is observed at k = 25. It is, therefore, proved from 
this figure that all POS tags are not equally significant. 
However, it is also revealed that even an F-score of 91.53 at   
k = 25 is still lower than that of CST2 in Table 4. This 
difference is caused by different methods of parameter 
initialization. 

Figure 5 shows how the initialization of θs affects CST2.  
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Table 6. POS tags predicted by CST2 for nouns. 

Methods F-score 

CST2 93.81 

Collobert and Weston [5] 92.71 

Azuma and Matsumoto [17] 93.10 

Florian and Ngai [4] 93.12 

Zhang and others [25] 94.13 

Kudo and Matsumoto [17] 93.91 

Carreras and Márquez [26] 93.74 

 

 
Supervised initialization implies that 0

s  is determined by 
training the subtask with a separate dataset. In text chunking, it 
is determined by a POS tagger trained using the WSJ corpus. 
On the other hand, a random initialization implies that 0

s  is 
chosen randomly. For both initialization methods, the number 
of subtask nodes is equally set to 45 (k = 45). In addition, the 
average F-score of the three trials is used for the training data. 

As shown in this figure, a supervised initialization converges 
much faster than a random initialization. While a supervised 
initialization stops at around t = 2.5 × 106, a random 
initialization finds a local optimum after 5 × 106 iterations. That 
is, a supervised initialization converges twice as fast as a 
random initialization. In addition, it converges to a better 
performance for the test data. It converges to an F-score of 
93.81, whereas a random initialization stops with an F-score of 
just 90.94. It can therefore be induced that the training of a 
subtask with an independent training set is important for fast 
convergence to a respectable local optimum. 

Finally, Table 6 compares CST2 with legacy text chunking 
methods. Among the five methods compared, the works in  
[4], [5], and [18] utilize the joint learning of multiple NLP  
tasks. The remaining three are state-of-the-art methods of text 
chunking. According to this table, CST2 achieves a competitive 
performance compared to the state-of-the-art methods, though 
it adopts a simple logistic function as its base classifier.      
In particular, even though CST2 achieves much lower 
performance on POS tagging than others (accuracy of 45.11% 
in CST2 versus an accuracy of 96.63% in [4], 97.19% in [5], 
and an F-score of 95.8 in [18]), it outperforms the three joint 
learning methods. These results prove the effectiveness of 
optimizing subtasks with respect to the objective of the target 
task. 

VII. Conclusion 

In a pipelined model of NLP tasks, the objectives of the 
subtasks often do not coincide with that of the target task. Thus, 

the subtasks optimized with their own training data do not 
guarantee the optimal performance of the target task. Rather, 
the errors of the subtasks are propagated to the target task and 
affect the target task negatively. To resolve this problem, we 
proposed a consolidation of subtasks for the target task (CST2). 
The CST2 estimates the parameters of a subtask to minimize 
the loss of the target task, not the loss of the subtask. For this,  
a back-propagation algorithm has been proposed. In this 
algorithm, the parameters of both the target task and subtasks 
are adjusted by a gradient descent of the loss function of the 
target task. 

The CST2 is evaluated by applying it to text chunking, in 
which POS tagging is a subtask. Experiments on the standard 
CoNLL-2000 dataset show that CST2 can outperform both the 
traditional cascading method and a text chunker trained with 
gold standard POS tags. The F-score of text chunking in CST2 
is higher than these methods in spite of the low accuracy of 
POS tagging. These results prove that the POS tagger in CST2 
is specialized to text chunking. We also showed that the 
parameter initialization of a subtask is important for fast 
convergence to a respectable performance. 
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