
704 Jeong-Woo Son et al. © 2014 ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0035

Most natural language processing tasks depend on the
outputs of some other tasks. Thus, they involve other tasks
as subtasks. The main problem of this type of pipelined
model is that the optimality of the subtasks that are
trained with their own data is not guaranteed in the final
target task, since the subtasks are not optimized with
respect to the target task. As a solution to this problem,
this paper proposes a consolidation of subtasks for a target
task (CST2). In CST2, all parameters of a target task and
its subtasks are optimized to fulfill the objective of the
target task. CST2 finds such optimized parameters
through a backpropagation algorithm. In experiments in
which text chunking is a target task and part-of-speech
tagging is its subtask, CST2 outperforms a traditional
pipelined text chunker. The experimental results prove the
effectiveness of optimizing subtasks with respect to the
target task.

Keywords: Pipelined NLP model, task consolidation,
chained task learning.

Manuscript received Jan. 29, 2014; revised Sept. 5, 2014; accepted Sept. 15, 2014.
This work was supported by the ICT R&D program of MSIP/IITP, Rep. of Korea (14-000-

11-002, Development of Object-based Knowledge Convergence Service Platform using Image
Recognition in Broadcasting Contents and 10044494, WiseKB: Big data based self-evolving
knowledge base and reasoning platform).

Jeong-Woo Son (corresponding author, jwson@etri.re.kr) is with the Broadcasting &
Telecommunications Media Research Laboratory, ETRI, Daejeon and also with the School of
Computer Science, Kyungpook National University, Daegu, Rep. of Korea.

Heegeun Yoon (hkyoon@sejong.knu.ac.kr) and Seong-Bae Park (sbpark@sejong.knu.ac.kr)
are with the College of IT Engineering, Kyungpook National University, Daegu, Rep. of Korea.

Keeseong Cho (chokis@etri.re.kr), and Won Ryu (wlyu@etri.re.kr) are with the
Broadcasting & Telecommunications Media Research Laboratory, ETRI, Daejeon, Rep. of
Korea.

I. Introduction

Most natural language processing (NLP) tasks consist of
many pipelined subtasks. These subtasks process their own
information and are often performed independently. For
instance, a natural-language parser takes, in general, a tokenizer
and a part-of-speech (POS) tagger as its subtasks, and these
subtasks are performed sequentially and independently prior to
the parser. The problem of this pipelined structure is that the
errors at the subtasks are propagated to the final target task;
thus, they crucially affect the performance of the task.

A general solution to this problem is to improve each subtask.
Even though the subtasks are imperfect, they are optimized to
perform best in their environment. However, such a subtask
optimization does not guarantee the optimal performance of the
target task. The objective of a subtask does not coincide with
that of the target task in many cases. For instance, let us
consider a POS tagger used as a subtask of text chunking.
Normally, a POS tagger tries to assign a POS tag to each word
in a sentence as correctly as possible. Thus, it distinguishes
singular nouns, plural nouns, and proper nouns. However, the
nouns need not be distinguished in text chunking, since their
roles are similar in identifying a noun phrase.

Some previous studies have taken the relation among
subtasks into account [1]–[3]. One way to do this is to train
subtasks jointly. Florian and Ngai [4] proposed multi-
dimensional transformation–based learning. They focused on
the joint learning of closely related NLP tasks assuming that
their order and independence are difficult to determine. On the
other hand, a reuse model of subtasks has been proposed by
Collobert and Weston [5]. They assumed that features that are
useful for one task might also be useful for other related tasks.
They therefore proposed a convolutional neural network to

Consolidation of Subtasks for
Target Task in Pipelined NLP Model

 Jeong-Woo Son, Heegeun Yoon, Seong-Bae Park, Keeseong Cho, and Won Ryu

ETRI Journal, Volume 36, Number 5, October 2014 Jeong-Woo Son et al. 705
http://dx.doi.org/10.4218/etrij.14.2214.0035

reuse subtasks trained for one task. However, the subtasks in
these studies optimize their own objectives, not the objective of
the final target task.

This paper proposes a consolidation of subtasks for a target
task (CST2). This method assumes that subtasks are cascaded
to form a pipeline. That is, the output of the subtasks is used as
an input of the target task. The key idea of CST2 is that all
subtasks and the target task should be optimized with respect to
the objective of the target task. To achieve this goal, CST2
optimizes the subtasks and target task iteratively. All tasks are
initially trained with their own objectives. That is, the
parameter values of not only the target task but also subtasks in
the pipeline are determined to optimize its own objective. They
are then adjusted to minimize the errors of the target task using
a backpropagation algorithm. The errors at the target task are
back propagated to the subtasks, and the subtasks adjust their
parameters to minimize the propagated errors. This process
iterates until the parameters converge.

CST2 is evaluated using a well-known NLP task; namely,
text chunking. POS tagging is used as a subtask of text
chunking. The experimental results on CoNLL-2000 shared-
task data show that CST2 achieves a higher performance than
the sequential model in which the output of POS tagging
becomes an input of text chunking. CST2 outperforms even a
text chunker trained with true POS tags. This result proves the
importance of optimization of subtasks with respect to the
target task.

The remainder of this paper is organized as follows. Section
II reviews other works related to joint learning in the NLP field.
Section III offers an overall description of CST2. Section IV
describes how a target task and subtasks are trained in CST2,
and the experimental results are then given in Section V. Finally,
some concluding remarks are provided in Section VI.

II. Related Works

NLP tasks naturally involve many other tasks as their
subtasks because tasks depend on one another. That is, the
output of a task often becomes an input of other tasks, and vice
versa. According to [6], joint learning of tasks results in better
performance than a single independent learning of each task,
since the information relevant to one task may be relevant to
other related tasks. Therefore, a number of techniques have
been explored to learn multiple tasks simultaneously [7]–[8].
These techniques are categorized into two types: feature
sharing and result sharing.

The feature-sharing type assumes that the useful features for
one task are also valuable for other related tasks [4]. Therefore,
the joint learning of tasks is conducted through feature sharing
among tasks. Collobert and Weston [5] proposed a unified

architecture for NLP tasks based on deep neural networks. In
this architecture, a task generates word features at the lookup-
table layer. Other tasks that are related with the task then reuse
the same word features to share information among them.
According to their experiments, the performance of a task is
improved when it borrows the word features from another task.

On the other hand, the result-sharing type assumes that some
useful features for a task are generated from the output of other
related tasks. Hatori and others [9] proposed an incremental
joint approach for word segmentation, POS tagging, and
dependency parsing of Chinese. In this study, a unified feature
set is used to learn the three tasks jointly, and the unified feature
set is a composition of features from each task. As a result, each
task can utilize the information generated from other tasks
through a unified feature set. Goldberg and Tsarfaty [10]
applied a similar idea to information sharing among
morphological segmentation, POS tagging, and syntactic
parsing for Hebrew. In addition, Watanabe and others [11] also
proposed a similar method for learning argument role labeling
and predicate sense disambiguation jointly.

Such information sharing allows substantial gain in the
performance of joint tasks. However, many NLP tasks are
structured as a pipelined model; that is, the target task in the
pipelined model is a task that takes outputs of other subtasks as
its input. The output of the target task is not fed to the subtasks.
The main problem of this structure is that the errors made by
the subtasks are propagated to the target task, since subtasks are
usually not perfect. Khalid and others [12] reported this
phenomenon in the relation of named-entity recognition (NER)
and named-entity normalization (NEN). They found that most
errors of NEN come from its subtask, NER. The most
common way to prohibit error propagation is to optimize all
subtasks as perfectly as possible [13]–[14]. However, owing to
a disagreement in the objectives of the target task and its
subtasks, such optimization of the subtasks does not guarantee
an optimal performance of the target task.

III. Consolidation of Subtask for Target Task

Figure 1 shows the architecture of CST2 in which one

subtask is assumed. Let 1 2 NS w w w  be an input sentence.

Each word wi in S is represented as a feature vector, xi. Assume

that both the final target task and its subtasks are classification

problems. For simplicity, we also assume that they are all

binary-class classification problems.
CST2 processes each word in the sentence sequentially. The

subtask g first classifies xi, and the classification result is then
fed forward to the target task f. Then, f determines the final
classification of xi using the outputs of g for xi and xi–1. For

706 Jeong-Woo Son et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0035

Fig. 1. Architecture of CST2.

f(θc)

g(θs)

x1 x2 xi–1 xi xi+1 xn

Target layer

Subtask layer

Input layer … …

… …

… …

instance, let f be the text chunking and g be the POS tagging.
A POS tagger first determines the POS tag of a given word,
and the POS tags of the word and its previous word are then
given to the text chunking as an input. Finally, the chunk label
of the word is determined by the text chunker using the input.

If a function ()cf  is given to solve the target task, then

the class of xi,
*
iy , is determined by

 *

{ 1, 1}
argmax [; ()] ,i c i

y
y y f  

  
  x

where θc and ()i x are the parameter and feature vectors of
f, respectively. The feature vector consists of the current word,
xi, the class label of the previous word, xi–1, and the outputs of
the subtask, g, for xi–1 and xi. That is, when a symbol 
represents feature concatenation, the feature vector ()i x is

        1 1; ; ; ,i i c i s i s if g g        x x x x x (1)

where θs is the parameter of g. Even if f is restricted to depend
on the result of one previous word in this figure, it can be
generalized to depend on the previous k words without a loss of
generality. In addition, this multi-layered architecture can allow
more subtasks between f and g.

IV. Training CST2

1. Parameter Optimization

The objective of CST2 is to maximize the performance of the
target task f. Thus, it optimizes both parameter θc of f and
parameter θs of g by minimizing the errors of the target task f.
That is, though subtask g has its own objective, it is also
optimized with respect to f.

Formally, when 1 1 2 2 | | | |{(,), (,), , (,)}D DD y y y x x x is a

training set of f, the optimal parameter of the final task f, *
c , is

determined by minimizing its empirical risk. That is,

| |
*

Θ
argmin (, [; ()]),

c c

D

c i c i
i

L y f


  


  x (2)

where Θc is a set of all possible θc. Since subtask g should be
optimized with respect to f, its optimal parameter *

s is also

obtained by minimizing the risk of f. That is,

| |

*

Θ
argmin (, [; ()]),

s s

D

s i c i
i

L y f


  


  x (3)

where θs is a set of all possible θs.
The CST2 adopts a stochastic gradient descent approach to

obtain *
c and *

s in equations (2) and (3). Algorithm 1
shows a pseudocode for the training of CST2. It first initializes
the parameters (0)

c and (0) .s Both (0)
c and (0)

s are
initialized independently to best perform their tasks f and g with
their own training data. The CST2 then updates θc and θs by
adjusting them iteratively to training set D. The main loop of
this algorithm iterates over the training examples in D. At time t,
each input xi is propagated through the architecture, and its
output is predicted. In this process, to consider sequential NLP
tasks, subtask g first classifies all input i Dx using ()t

c ,
and the target task f then predicts the class of i Dx using
both ()t

c and the results of g. After that, the error of f defined
with loss L is propagated backward. The parameters ()t

c and
()t
s are updated in the direction of the gradient descent of the

loss. This process iterates until the parameters converge.
We assume that the error of a training example (xi, yi) is

defined by the square loss function. That is,

21
(, (; ()) ((; ()))

2
.i c i c i iL y f f y    x x

Algorithm 1 Training CST2 with a stochastic gradient descent.

Input:
D = {(x1, y1), (x2, y2) , … , (x|D|, y|D|)}
 η = learning rate

Body:
Initialize t : = 0.
Initialize parameters (0)

c and ().t
s

repeat
for each (xi, yi)  D do

Propagate the input forward.
- Execute ();)(.t

isg  x

- Execute () ; ())(.t
c if   x

Propagate the error backward
- (1) (): ().t t

c c cL     

- (1) (): ().t t
s s sL     

if both θc and θs converge, then
Return (1) (1)(,).t t

c s  

end if
t : = t + 1.

end for
until both θc and θs converge.
Return () (),).(t t

c s 

In addition, we restrict both f and g to a logistic function.

ETRI Journal, Volume 36, Number 5, October 2014 Jeong-Woo Son et al. 707
http://dx.doi.org/10.4218/etrij.14.2214.0035

That is,

1
(; ()) ,

1 exp(())

1
(;) .

1 exp()

c i T
c i

s i T
s i

f

g

 
 





 


 

x
x

x
x

Note that θc is a vector whose dimension is equivalent to that of

()i x . When l is the dimension of θc, the gradient of

(, [; ()])i c iL y f   x with respect to θc is given as

() , , , .
(1) (2) ()c

c c c

L L L
L

l


  
   

      

Since f is a logistic function, the derivative
()c

L

j



 is

  2(; ()) (; ())
()

exp(()) ()

,()

c i i c i
c

c i i j

i j

L
f y f

j
   



  

 




  



  

 

x x

x x

x

(4)

where ()i j x is the jth feature of ()i x and is

  2(; ()) (; ()) exp(()).c i i c i c if y f          x x x

The parameter θs is also a vector whose dimension is the

same as that of xi. It should be adjusted by the gradient descent

of (, [; ()])i c iL y f   x . Thus, ()sL  should be computed,

but ()sL  cannot be obtained directly since θs influences f

through g. We therefore use the chain rule. Then,
()s

L

j



 can

be written as

(;)
.

() (;) ()
s i

s s i s

gL L

j g j


  

 
 

  
x

x
 (5)

The second term of this equation can be obtained in a similar

way as
()c

L

j



. Therefore, we have

2(;)
(;) exp()

(
,

)
Ts i

s i s i ij
s

g
g

j


 




   


x
x x x (6)

where xij is the jth feature value of xi.

The first term of (5) can be obtained using the definition of

(,)i s x in (1). Since the derivative of L is computed with

respect to (;),s ig  x both 1(; ())c if   x and 1(;)s ig  x

are regarded as a constant for all xi. Therefore, they are

eliminated from .
(;)s i

L

g 


 x
 As a result,

 

 

2(; ()) (; ())
(;)

exp(()) ()

,

c i i c i
s i

T
c i c

c

L
f y f

g

r

r

   


  
 


  



  

 

x x
x

x
(7)

where ()c r is the rth element of θc that corresponds to

(;)s ig  x in (1). From (6) and (7),
()s

L

j



 is

2(;) exp() ().
()

T
s i s i ij c

s

L
g r

j
   




     


x x x

2. Initial Values and Multiple Classes

Since CST2 estimates the best *
c and *

s by a kind of
backpropagation procedure, the initial values, (0)

c and (0)
s ,

can be given randomly [15]. However, decent starting values
for θc and θs not only allow CST2 to converge fast but also to
converge to a better performance when many local optima
exist. Therefore, we initialize θs by training task g sequentially
with its own training data.

Assume that there is another separate training set

1 1 2 2 | | | |' {(,), (,), , (,)}D DD y y y       x x x for subtask g, where

iy is the class label of ix in g. The initial value (0)
s for

parameter θs is then obtained by minimizing the empirical risk

of g. That is,
(0)

(,)
Θ

argmin (, (,)).
i i

s s

s i s iy D
L y g


 

  


   x
x

This (0)
s can also be obtained through a gradient descent

approach. Due to this initialization step, CST2 has another

advantage; that is, models for subtasks can take benefits from

its own datasets separated from the dataset for the target task.
If subtask g is a multi-class classification task, then the node

Fig. 2. CST2 for a multi-class subtask.

f(θc)

g(θs;xi)

Target layer

Subtask layer

Input layer xi

g1 g2

…
gkg3

708 Jeong-Woo Son et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0035

for g in Fig. 1 should be changed slightly, as shown in Fig. 2.
Assume that g has k classes. The subtask layer then consists of
k nodes. Each)1(jg j k  in this layer is a logistic function
that classifies the jth class based on a one-versus-all approach.
Then gj, whose output is largest, is determined to be (;)s ig  x .
That is,

1
(;) argmax (;).s i j s i

j k
g x g x 

 
 (8)

If the target task f is a multi-class task, then the output layer
is also changed in the same manner as the multi-class
subtask.

V. Characteristics of CST2

CST2 has mainly two characteristics compared to other
learning techniques such as joint learning, multi-task learning,
transfer learning, and so on. First, in CST2, all the parameters
for subtasks are actually re-estimated to support the target
task through the backpropagation. Let’s consider learning
techniques with constraints, such as a constrained conditional
model (CCM) [16]–[17]. CCM constructs subtasks
independently and then combines all the tasks for the target
task by using predefined constraints. Thus, the information
from subtasks is selectively delivered to the target task. Since
this selectivity is adopted by using constraints, CCM need not
make any changes to subtasks to reflect information required
for use with the target task. However, in CST2, the information
required by the target task is distributed to all subtasks by the
backpropagation algorithm, and then, all parameters of
subtasks are actually re-estimated.

Second, CST2 optimizes all subtasks only for the benefit of
the target task. For several tasks, CST2 tries to achieve a
maximum performance only on the target task, even though
models corresponding to the subtasks sacrifice their own
performance levels.

This characteristic is addressed by comparing the proposed
method with multilayer sequence labeling (MSL) proposed by
Azuma and Matsumoto [18]. MSL was initially designed with
the same motif of CST2 to consider pipelined tasks. However,
since MSL attempts to achieve maximum performances over
all tasks, its objective function still considers performances on
subtasks. That is, when two tasks are given, MSL’s objective
function can be defined as minimizing L1 + L2, where L1 and
L2 are loss functions for given tasks. On the other hand, CST2
defines its objective function as minimizing L2 if L2
corresponds to the loss function of the target task. Due to this
distinguished difference of CST2, it is more appropriate for a
system that produces the output from the target task supported
by several subtasks.

VI. Experiments

1. Dataset

An evaluation of CST2 is conducted by applying it to a well-
known NLP task; text chunking.1) The goal of text chunking is
to identify the non-recursive portions of various phrase types.
Two kinds of information are, in general, used as the input of
text chunking. One is lexical information, and the other is POS
tagging information. Thus, POS tagging should be performed
prior to text chunking and is regarded as a subtask of text
chunking.

We use CoNLL-2000 shared task data as the dataset for text
chunking. This dataset is constructed using a portion of the
Wall Street Journal (WSJ) corpus. Table 2 shows simple
statistics of the data sets. Sections 15–18 of the WSJ corpus are
used as the training set, whereas section 20 is used as the test
set. The training and test sets are composed of 211,727 words
and 47,377 words, respectively. A chunk label is attached to
each word using the IOB model [19]. For instance, B-NP is
attached to the first word of a noun phrase, while other words
in the noun phrase have I-NP as their chunk labels. Since there
are eleven phrase types in the WSJ corpus, this dataset has 23
chunk labels, including chunk label O for indicating that the
word is not a part of any phrase.

Most features for text chunking are borrowed from [20] and
[21]. Table 1 summarizes the features used in the experiments.
In this table, wi and pi denote the lexicon and POS tag for the
ith word in a sentence, respectively. Lexicons and POS tags of
word wi and its surrounding words, wi+2, are used as features.

Table 1. Features for text chunking.

Feature type Description

Word feature 2 1 1 2 1 1, , , , , ,i i i i i i i i iw w w w w w w w w      

Suffix Suffixes of wi (up to length 5)

Lexical feature

Whether wi contains capitals

Whether wi has a number

Whether wi has a hyphen

Whether wi is all capitals

Whether wi starts with a capital and is located in the

middle of a sentence

POS 2 1 1 2 1 1, , , , , ,i i i i i i i i ip p p p p p p p p      

Word + POS 1 1 1 1, , , , ,i i i i i i i i i i i iw p w p w p p w p w p w        

Chunk + POS 1i ic p 

Chunk 1 2 1i i ic c c   

Chunk + Word 1i ic w 

1) In all experiments, we used the same settings with [13] basically.

ETRI Journal, Volume 36, Number 5, October 2014 Jeong-Woo Son et al. 709
http://dx.doi.org/10.4218/etrij.14.2214.0035

Table 2. Simple statistics of experimental data.

 Training Test

Section 0–18 22–24

of sentences 38,219 5,462
POS

Tagging
of words 912,344 129,654

Section 15–18 20

of sentences 8,936 2,012 Chunking

of words 211,727 47,377

Table 3. Features for POS tagging.

Feature type Description

Word feature
3 2 1 1 2 3

2 1 1 1 1 2

, , , , , , ,

, , ,
i i i i i i i

i i i i i i i i

w w w w w w w

w w w w w w w w
     

        

Prefix Prefixes of wi (up to length 9)

Suffix Suffixes of wi (up to length 9)

Lexical feature

Whether wi contains capitals

Whether wi has a number

Whether wi has a hyphen

Whether wi is all capitals

Whether wi starts with a capital and is located in

the middle of a sentence

POS 3 2 1 3 2 2 1, , , ,i i i i i i ip p p p p p p       

Word + POS 3 2 1, ,i i i i i ip w p w p w    

However, only the chunk labels of previous words are used as
features since text chunking works sequentially.

An independent dataset can be used for initializing θs of
subtask g. Since POS tagging is our subtask, a standard WSJ
corpus is used to train a POS tagger. The dataset is divided into
training and test sets as in [22]–[23]. The training set is
constructed using sections 0–18, and the test set is from
sections 22–24. Table 2 shows simple statistics of the sets. The
training set contains 38,219 sentences and 912,344 words,
while the test set has 5,462 sentences and 129,654 words. For
POS labels, 45 POS tags used in the Penn Treebank are
adopted. Thus, the number of nodes in Fig. 1 is also 45. That is,
k = 45. The features for POS tagging are those used in [24].
Table 3 explains the features. The lexicons of the current and
surrounding words, as well as POS tags of previous words, are
used as features. The 3 words of the current word are used as
surrounding words.

In each of the experiments, user parameter η in Algorithm 1
is heuristically set to 0.09. The performance of text chunking is
measured based on the precision, recall, and F-score, whereas
that of POS tagging is measured based on the accuracy.

200×103

Fig. 3. CST2 for a multi-class subtask: (a) text chunking and (b)
POS tagging performances.

0 200×103 400×103 600×103 800×103 1×106

t

94.0

93.5

93.0

92.5

92.0

91.5

F
-s

co
re

(a)

0 200×103 400×103 600×103 800×103 1×106

t

100

90

80

70

50

40

A
cc

ur
ac

y
(%

)

(b)

60

2. Experimental Results

Figure 3 shows the performance of CST2. The figure shows
how the performances of the target task and subtask change
according to the iteration counter in Algorithm 1, (t). Figure
3(a) demonstrates that the F-score of the target task, text
chunking, is improved monotonically as t increases. At t = 0,
both text chunking and POS tagging are independently trained
with their own datasets. As a result, text chunking shows a very
high F-score of 91.97 in spite of its initial state. The F-score
then increases up to 93.81, and becomes stabilized after t = 6 ×	
105. Text chunking converges completely at t = 106. On the
other hand, the performance of the subtask decreases rapidly as
t increases. As shown in Fig. 3(b), the accuracy of POS tagging
is 97.23% at t = 0, but it decreases for large t. It becomes
45.11% when t ≥ 2 ×	105.

To see why the F-score of text chunking is improved
whereas the accuracy of POS tagging becomes worse as t
increases, we compare CST2 with two baselines. One is CGP,
which is a logistic classifier trained with gold standard POS

710 Jeong-Woo Son et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0035

Table 4. Text chunking performance.

Methods Precision Recall F-score

CST2 93.15% 94.49% 93.81

CGP 92.33% 93.79% 93.05

CIP 91.23% 92.71% 91.97

Table 5. POS tags predicted by CST2 for nouns.

Predicted tags
Methods

NN NNS NNP NNPS

NN 6,480 0 3 0

NNS 2,883 4 20 1

NNP 4,141 0 361 11
True tags

NNPS 127 0 1 2

tags, and the other is CIP, which is also a logistic classifier but
trained with POS tags supplied by an independently trained
POS tagger. Table 4 shows the performances of CST2, CGP,
and CIP. CIP achieves the worst F-score of 91.97, while CST2
shows the best F-score of 93.81. Since the POS tags supplied
by a trained POS tagger are used as a part of the input for CIP,
some errors are included in the POS tags. These errors are the
main contributing factor as to why CIP has the worst
performance.

The same errors of the POS tagger are also propagated to
CST2, but because these errors are resolved by the
backpropagation step, they do not have a negative effect on it.
The parameter of the POS tagger is adjusted to minimize the
errors of text chunking in CST2. As a result, the F-score of
CST2 is higher than even that of CGP. CGP shows an F-score
of just 93.05 even if it uses gold standard POS tags. The main
reason for the lower performance of CGP than CST2 is the
over-specification of the POS tags. That is, some POS tags do
not provide any information for chunk classification. For
instance, there are four POS tags for nouns in the WSJ corpus:
NN (singular noun), NNS (plural noun), NNP (singular proper
noun), and NNPS (plural proper noun). However, there is only
one NP tag for noun phrases in text chunking. All nouns
become a part of NP no matter what their POS tag is. Such
over-specification of POS tags, therefore, becomes redundant
information for text chunking. Table 5 proves this. This table
reports the predicted POS tags by CST2 for nouns when it
shows the best performance. Although true POS tags for nouns
vary, CST2 considers most of them to be NN. Therefore, the
performance of POS tagging in CST2 may be extremely low.
The accuracy of the POS tagger is actually just 45.11%, as

Fig. 4. Performance of random initialized CST2 according to the
number of subtask nodes.

10 20 30 40

k

91.8

91.6

91.4

91.2

91.0

90.8

90.6

90.4

90.2

90.0

F
-s

co
re

Fig. 5. Effect of supervised initialization of θs.

5×106

t

86

F
-s

co
re

4×1063×106 2×106 1×106

88

90

92

94

96

98

100

Random init. (training)
Supervised init. (training)
Random init. (test)
Supervised init. (test)

shown in Fig. 3(b). However, the fact that CST2 outperforms
both CGP and CIP proves that specific discrimination of POS
tags is not needed for text chunking.

Since the number of POS tags is 45, we have 45 nodes for
POS tagging. That is, k = 45 in Fig. 2. If some POS tags are
simply redundant information, then the performance of CST2
will be affected by the number of nodes. Figure 4 shows the
F-score of CST2 with various values of k. These F-scores are
obtained after initializing both 0

c and 0
s randomly owing

to the disagreement between k and the number of POS tags.
Since different initial values can result in different local optima,
the F-scores in this figure are the average of three trials. The
best F-score is observed at k = 25. It is, therefore, proved from
this figure that all POS tags are not equally significant.
However, it is also revealed that even an F-score of 91.53 at
k = 25 is still lower than that of CST2 in Table 4. This
difference is caused by different methods of parameter
initialization.

Figure 5 shows how the initialization of θs affects CST2.

ETRI Journal, Volume 36, Number 5, October 2014 Jeong-Woo Son et al. 711
http://dx.doi.org/10.4218/etrij.14.2214.0035

Table 6. POS tags predicted by CST2 for nouns.

Methods F-score

CST2 93.81

Collobert and Weston [5] 92.71

Azuma and Matsumoto [17] 93.10

Florian and Ngai [4] 93.12

Zhang and others [25] 94.13

Kudo and Matsumoto [17] 93.91

Carreras and Márquez [26] 93.74

Supervised initialization implies that 0

s is determined by
training the subtask with a separate dataset. In text chunking, it
is determined by a POS tagger trained using the WSJ corpus.
On the other hand, a random initialization implies that 0

s is
chosen randomly. For both initialization methods, the number
of subtask nodes is equally set to 45 (k = 45). In addition, the
average F-score of the three trials is used for the training data.

As shown in this figure, a supervised initialization converges
much faster than a random initialization. While a supervised
initialization stops at around t = 2.5 × 106, a random
initialization finds a local optimum after 5 × 106 iterations. That
is, a supervised initialization converges twice as fast as a
random initialization. In addition, it converges to a better
performance for the test data. It converges to an F-score of
93.81, whereas a random initialization stops with an F-score of
just 90.94. It can therefore be induced that the training of a
subtask with an independent training set is important for fast
convergence to a respectable local optimum.

Finally, Table 6 compares CST2 with legacy text chunking
methods. Among the five methods compared, the works in
[4], [5], and [18] utilize the joint learning of multiple NLP
tasks. The remaining three are state-of-the-art methods of text
chunking. According to this table, CST2 achieves a competitive
performance compared to the state-of-the-art methods, though
it adopts a simple logistic function as its base classifier.
In particular, even though CST2 achieves much lower
performance on POS tagging than others (accuracy of 45.11%
in CST2 versus an accuracy of 96.63% in [4], 97.19% in [5],
and an F-score of 95.8 in [18]), it outperforms the three joint
learning methods. These results prove the effectiveness of
optimizing subtasks with respect to the objective of the target
task.

VII. Conclusion

In a pipelined model of NLP tasks, the objectives of the
subtasks often do not coincide with that of the target task. Thus,

the subtasks optimized with their own training data do not
guarantee the optimal performance of the target task. Rather,
the errors of the subtasks are propagated to the target task and
affect the target task negatively. To resolve this problem, we
proposed a consolidation of subtasks for the target task (CST2).
The CST2 estimates the parameters of a subtask to minimize
the loss of the target task, not the loss of the subtask. For this,
a back-propagation algorithm has been proposed. In this
algorithm, the parameters of both the target task and subtasks
are adjusted by a gradient descent of the loss function of the
target task.

The CST2 is evaluated by applying it to text chunking, in
which POS tagging is a subtask. Experiments on the standard
CoNLL-2000 dataset show that CST2 can outperform both the
traditional cascading method and a text chunker trained with
gold standard POS tags. The F-score of text chunking in CST2
is higher than these methods in spite of the low accuracy of
POS tagging. These results prove that the POS tagger in CST2
is specialized to text chunking. We also showed that the
parameter initialization of a subtask is important for fast
convergence to a respectable performance.

References

[1] G. Tur, “Multitask Learning for Spoken Language

Understanding,” Proc. Int. Conf. Acoust., Speech, Signal Process.,

Toulouse, France, May 14–19, 2006, pp. 585–588.

[2] W. Sun, “A Stacked Sub-Word Model for Joint Chinese Word

Segmentation and Part-of-Speech Tagging,” Proc. Annual

Meeting Association Comput. Linguistics, Portland, OR, USA,

June 19–24, 2011, pp. 1385–1394.

[3] J. Finkel and C. Manning, “Hierarchical Joint Learning:

Improving Joint Parsing and Named Entity Recognition with

Non-jointly Labeled Data,” Proc. Annual Meeting Association

Comput. Linguistics, Uppsala, Sweden, July 11–16, 2010, pp.

720–728.

[4] R. Florian and G. Ngai, “Multidimensional Transformation-Based

Learning,” Proc. Workshop Comput. Natural Language Learning,

Boulder, CO, USA, vol. 7, June 4–5, 2009, pp. 1–8.

[5] R. Collobert and J. Weston, “A Unified Architecture for Natural

Language Processing: Deep Neural Networks with Multitask

Learning,” Proc. Int. Conf. Mach. Learning, Helsinki, Finland,

July 5–9, 2008, pp. 160–167.

[6] R. Caruana, L. Pratt, and S. Thrun, “Multitask Learning,” Mach.

Learning, vol. 28, no. 1, July 1997, pp. 41–75.

[7] G. Neubig et al., “Unsupervised Model for Joint Phrase Alignment

and Extraction,” Proc. Annual Meeting Association Comput.

Linguistics, Portland, OR, USA, vol. 1, June 19–24, 2011, pp.

632–641.

[8] X. Liu et al., “Joint Inference of Named Entity Recognition and

712 Jeong-Woo Son et al. ETRI Journal, Volume 36, Number 5, October 2014
http://dx.doi.org/10.4218/etrij.14.2214.0035

Normalization for Tweets,” Proc. Annual Meeting Association

Comput. Linguistics, Jeju, Rep. of Korea, vol. 1, July 8–14, 2012,

pp. 526–535.

[9] J. Hatori et al., “Incremental Joint Approach to Word

Segmentation, POS Tagging, and Dependency Parsing in

Chinese,” Proc. Annual Meeting Association Comput. Linguistics,

Jeju, Rep. of Korea, July 8–14, 2012, pp. 1045–1053.

[10] Y. Goldberg and R. Tsarfaty, “A Single Generative Model for Joint

Morphological Segmentation and Syntactic Parsing,” Proc.

Annual Meeting Association Comput. Linguistics, Columbus, OH,

USA, June 15–20, 2008, pp. 371–379.

[11] Y. Watanabe, M. Asahara, and Y. Matsumoto, “A Structured

Model for Joint Learning of Argument Roles and Predicate

Senses,” Proc. Annual Meeting Association Comput. Linguistics,

Uppsala, Sweden, July 11–16, 2010, pp. 98–102.

[12] M. Khalid, V. Jijkoun, and M. Rijke, “The Impact of Named

Entity Normalization on Information Retrieval for Question

Answering,” Proc. European Conf. IR. Res., Glasgow, UK, Mar.

30–Apr. 3, 2008, pp. 705–710.

[13] J. Finkel, C. Manning, and A. Ng, “Solving the Problem of

Cascading Errors: Approximate Bayesian Inference for Linguistic

Annotation Pipelines,” Proc. Conf. Empirical Methods Natural

Language Process., Sydney, Australia, July 22–23, 2006, pp.

618–626.

[14] H. Song et al., “A Cost Sensitive Part-of-Speech Tagging:

Differentiating Serious Errors from Minor Errors,” Proc. Annual

Meeting Association Comput. Linguistics, Jeju, Rep. of Korea,

vol. 1, July 8–14, 2012, pp. 1025–1034.

[15] S. Haykin, Neural Networks: A Comprehensive Foundation, New

Jersey, USA: Prentice Hall, 1999.

[16] M. Chang et al., “Learning and Inference with Constraints,” Proc.

AAAI Conf. Artif. Intell., Chicago, IL, USA, July 13–17, 2008, pp.

1513–1518.

[17] D. Roth and W. Yih, “A Linear Programming Formulation for

Global Inference in Natural Language Tasks,” Proc. Annual Conf.

Comput. Natural Language Learning, Boston, MA, USA, May

6–7, 2004, pp. 1–8.

[18] A. Azuma and Y. Matsumoto, “Multilayer Sequence Labelling,”

Proc. Conf. Empirical Methods Natural Language Process.,

Edinburgh, UK, July 30–31, 2011, pp. 628–637.

[19] L. Ramshaw and M. Marcus, “Text Chunking Using

Transformation-Based Learning,” Proc. Workshop Very Large

Corpora, Boston, MA, USA, June 30, 1995, pp. 82–94.

[20] T. Kudo and Y. Matsumoto, “Chunking with Support Vector

Machines,” Proc. Meeting North American Chapter Association

Comput. Linguistics, Pittsburgh, PA, USA, June 2–7, 2001, pp.

1–8.

[21] T. Kudo, CRF++: Yet Another CRF Toolkit, NIST, 2005.

Accessed Sept. 20, 2013. http://crfpp.sourceforge.net

[22] K. Toutanova et al., “Feature-Rich Part-of-Speech Tagging with a

Cyclic Dependency Network,” Proc. Annual Meeting

Association Comput. Linguistics, Sapporo, Japan, vol. 1, July 7–

12, 2003, pp. 173–180.

[23] L. Shen, G. Satta, and A. Joshi. “Guided Learning for Bidirectional

Sequence Classification,” Proc. Annual Meeting Association

Comput. Linguistics, Prague, Czech Republic, June 23–30, 2007,

pp. 760–767.

[24] Y. Tsuruoka and J. Tsujii, “Bidirectional Inference with the

Easiest-First Strategy for Tagging Sequence Data,” Proc. Conf.

Human Language Technol. Natural Language Process.,

Vancouver, Canada, Oct. 6–8, 2005, pp. 467–474.

[25] T. Zhang, F. Damerau, and D. Johnson, “Text Chunking Using

Regularized Winnow,” Proc. Annual Meeting Association

Comput. Linguistics, Toulouse, France, July 9–11, 2001, pp. 539–

546.

[26] X. Carreras and L. Márquez, “Phrase Recognition by Filtering and

Ranking with Perceptrons,” Proc. Int. Conf. Recent. Adv. Natural

Language Process., Borovets, Bulgaria, Sept. 10–12, 2003, pp.

205–216.

ETRI Journal, Volume 36, Number 5, October 2014 Jeong-Woo Son et al. 713
http://dx.doi.org/10.4218/etrij.14.2214.0035

Jeong-Woo Son received his MS and PhD

degrees in computer engineering from

Kyungpook National University, Daegu, Rep.

of Korea, in 2007 and 2012, respectively. Since

2013, he has been with the Broadcasting &

Telecommunications Media Research Lab.,

Electronics and Telecommunications Research

Institute, Daejeon, Rep. of Korea. He focuses on machine learning,

natural language processing, and information retrieval.

Heegeun Yoon received his MS in computer

engineering from Kyungpook National

University, Daegu, Rep. of Korea, in 2009. Now,

he is a PhD candidate at the School of

Computer Science and Engineering,

Kyungpook National University. His main

research interests include machine learning and

natural language processing.

Seong-Bae Park received his MS and PhD

degrees in computer science from Seoul

National University, Seoul, Rep. of Korea, in

1996 and 2006, respectively. Now, he is an

associate professor at the School of Computer

Science and Engineering, Kyungpook National

University, Daegu, Rep. of Korea. He focuses

on machine learning, natural language processing, text mining, and

bio-informatics.

Keeseong Cho received his MS degree in

electrical engineering from Kyungpook

National University, Daegu, Rep. of Korea, in

1984. Since 1984, he has been with the

Broadcasting & Telecommunications Media

Research Lab., Electronics and

Telecommunications Research Institute,

Daejeon, Rep. of Korea. His research focuses on service control

techniques; broadcasting and telecommunication convergence services;

and IPTV.

Won Ryu received his MS degree in

computational statistics from Seoul National

University, Seoul, Rep. of Korea, in 1988 and

his PhD degree in information engineering from

Sungkyunkwan University, Seoul, Rep. of

Korea, in 2002. Since 1989, he has been with

the Intelligent Convergence Technology

Research Department, Electronics and Telecommunications Research

Institute, Daejeon, Rep. of Korea, where he is now a managing director.

His main research interests are broadcasting and telecommunication

convergence service platforms; open IPTV; and mixed reality.

