• Title/Summary/Keyword: Tetrodotoxin

Search Result 109, Processing Time 0.022 seconds

Effect of $K^+-channel$ Blockers on the Muscarinic- and $A_1-adenosine-Receptor$ Coupled Regulation of Electrically Evoked Acetylcholine Release in the Rat Hippocampus

  • Yu, Byung-Sik;Kim, Do-Kyung;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1998
  • It was attempted to clarify the participation of $K^+-channels$ in the post-receptor mechanisms of the muscarinic and $A_1-adenosine$ receptor- mediated control of acetylcholine (ACh) release in the present study. Slices from the rat hippocampus were equilibrated with $[^3H]$choline and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 V/cm, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Oxotremorine (Oxo, $0.1{\sim}10\;{\mu}M$), a muscarinic agonist, and $N^6-cyclopentyladenosine$ (CPA, $1{\sim}30\;{\mu}M$), a specific $A_1-adenosine$ agonist, decreased the ACh release in a dose-dependent manner, without affecting the basal rate of release. 4-aminopyridine (4AP), a specific A-type $K^+-channel$ blocker ($1{\sim}100\;{\mu}M$), increased the evoked ACh release in a dose-related fashion, and the basal rate of release is increased by 3 and $100\;{\mu}M$. Tetraethylammonium (TEA), a non-specific $K^+-channel$ blocker ($0.1{\sim}10\;{\mu}M$), increased the evoked ACh release in a dose-dependent manner without affecting the basal release. The effects of Oxo and CPA were not affected by $3\;{\mu}M$ 4AP co-treatment, but 10 mM TEA significantly inhibited the effects of Oxo and CPA. 4AP ($10\;{\mu}M$)- and TEA (10 mM)-induced increments of evoked ACh release were completely abolished in Ca^{2+}-free$ medium, but these were recoverd in low Ca^{2+}$ medium. And the effects of $K^+-channel$ blockers in low Ca^{2+}$ medium were inhibited by $Mg^{2+}$ (4 mM) and abolished by $0.3\;{\mu}M$ tetrodotoxin (TTX). These results suggest that the changes in TEA-sensitive potassium channel permeability and the consequent limitation of Ca^{2+}$ influx are partly involved in the presynaptic modulation of the evoked ACh-release by muscarinic and $A_1-adenosine$ receptors of the rat hippocampus.

  • PDF

Mechanism of Relaxation of Rat Aorta by Scopoletin; an Active Constituent of Artemisia Capillaris

  • Kwon Eui Kwang;Jin Sang Sik;oChoi Min H;Hwang Kyung Taek;Shim Jin Chan;Hwang Il Taek;Han Jong Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.389-396
    • /
    • 2002
  • In the present work, we examined the mechanism of vasorelaxant effect of scopoletin, an active constituent of Artemisia capillaris on rat thoracic descending aortic rings. Scopoletin induced a concentration-dependent relaxation in rat thoracic descending aortic rings pre-contracted with phenylephrine (EC/sub 50/ = 238.94±37.4 μM), while it was less effective in rat thoracic descending aortic rings precontracted with high potassium solution (KCI 30 mM). Vasorelaxation by scopoletin was significantly inhibited after endothelial removal, but recovered at high concentration. Pretreatment of rat thoracic descending aortic rings with N/sup G/-nitro-L-arginine (100 μM), a nitric oxide synthase inhibitor, and atropine (1 μM), a muscarinic receptor antagonist, significantly inhibited scopoletin-induced relaxation of rat thoracic descending aortic rings. Neither indomethacin (3 μM), an inhibitor of cydooxygenase, nor propranolol (1 μM), a β -adrenoceptor antagonist, modified the effect of scopoletin. The combination of N/sup G/ -nitro-L-arginine (100 μ M) and miconazole (10 μ M), an inhibitor of cytochrome P 450, did not modify the effect of scopoletin, when compared with pretreatment with N/sup G/-nitro-L-arginine(100 μM) alone. Vasorelaxant effect of scopoletin was inverted by pretreatment with diltiazem (10 μM), a Ca/sup 2+/-channel blocker, at low concentration, while restored at high concentration. Apamin (K/sub ca/-channel blocker, 1 μM), 4-aminopyridine (4-AP, K/sub v/-channel blocker, 1 mM), and tetrodotoxin (TTX, Na/sup +/-channel blocker 1 μM) potentiated the vasorelaxant effect of scopoledn, but glibendamide (K/sub ATP/-channel blocker, 10 μM), tetraetylammonium(TEA, non-selective K-channel blocker, 10 mM) did not affect the relaxation of scopoletin. Free radical scavengers (TEMPO, catalase, mannitol) did not modify vascular tone. These results suggest that nitric oxide, Ca/sup 2+/ -channels play a role in endothelium-dependent relaxations to scopoletin in rat aortas, that apamin, 4-AP, TTX but not glibenclamide, TEA potentiated relaxation to scopoletin mediated by these channels, and that free radicals do not concern to the vasorelaxant effect of scopoletin.

MLCK and PKC Involvements via Gi and Rho A Protein in Contraction by the Electrical Field Stimulation in Feline Esophageal Smooth Muscle

  • Park, Sun-Young;Shim, Jae-Ho;Kim, Mi-Na;Sun, Yih Hsiu;Kwak, Hyun-Soo;Yan, Xiangmei;Choi, Byung-Chul;Im, Chae-Uk;Sim, Sang-Soo;Jeong, Ji-Hoon;Kim, In-Kyeom;Min, Young-Sil;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • We have shown that myosin light chain kinase (MLCK) was required for the off-contraction in response to the electrical field stimulation (EFS) of feline esophageal smooth muscle. In this study, we investigated whether protein kinase C (PKC) may require the on-contraction in response to EFS using feline esophageal smooth muscle. The contractions were recorded using an isometric force transducer. On-contraction occurred in the presence of $N^G$-nitro-L-arginine methyl ester (L-NAME), suggesting that nitric oxide acts as an inhibitory mediator in smooth muscle. The excitatory composition of both contractions was cholinergic dependent which was blocked by tetrodotoxin or atropine. The on-contraction was abolished in $Ca^{2+}$-free buffer but reappeared in normal $Ca^{2+}$-containing buffer indicating that the contraction was $Ca^{2+}$ dependent. 4-aminopyridine (4-AP), voltage-dependent $K^+$ channel blocker, significantly enhanced on-contraction. Aluminum fluoride (a G-protein activator) increased on-contraction. Pertussis toxin (a $G_i$ inactivator) and C3 exoenzyme (a rhoA inactivator) significantly decreased on-contraction suggesting that Gi or rhoA protein may be related with $Ca^{2+}$ and $K^+$ channel. ML-9, a MLCK inhibitor, significantly inhibited on-contraction, and chelerythrine (PKC inhibitor) affected on the contraction. These results suggest that endogenous cholinergic contractions activated directly by low-frequency EFS may be mediated by $Ca^{2+}$, and G proteins, such as Gi and rhoA, which resulted in the activation of MLCK, and PKC to produce the contraction in feline distal esophageal smooth muscle.

Effect of Adenosine on the Mechanical and Electrical Activities of Guinea-pig Stomach (기니피그 위 평활근의 기계적 및 전기적 활동에 대한 아데노신 효과)

  • Kim, Heui-Jeen;Ko, Kwang-Wook;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.225-239
    • /
    • 1987
  • The effects of adenosine on the mechanical contractions and electrical activities were investigated in guinea-pig stomach. Spontaneous contractions of the antral region were recorded with force transducer, and the phasic contractions of fundic region were induced by electrical field stimulation. Electrical responses of smocth muscle cells were recored using glass capillary microelectrodes filled with 3M-KCl. Field stimulation was applied transmurally by using a pair of platinum wire (0.5 mm in diameter) placed on both sides of tissue. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows. 1) Adenosine suppressed the spontaneous contractions of antrum in a dose-dependent manner. 2) The inhibitory effect on antral spontaneous contractions was not influenced by the administration of guanethidine $(5{\times}10^{-6}\;M)$ and atropine $10^{-6}\;M$, or in the presence of dipyridamole $10^{-7}\;M$. 3) The phasic contractions of fundus induced by electrical field stimulation, which disappeared rapidly by the addition of tetrodotoxin $(3{\times}10^{-7}\;M)$, were potentiated by adenosine in the presence of guanethidine. 4) Adenosine decreased the amplitude and the maximum rate of rise of slow waves, and the increased amplitude and rate of rise evoked in the high calcium solution or in the presence of TEA were decreased by adenosine. 5) The non-adrenergic, non-cholinergic inhibitory junction potential (IJP) was inhibited by adenosine in the antral region, while the excitatory junction potential (EJP) in the fundic region was potentiated. From the above results, the following conclusions could be made. 1) Adenosine suppresses the spontaneous contractions of antrum strip by the decrease in amplitude and rate of rise of slow waves. 2) The release of neurotransmitter(s) from non-adrenergic, non-cholinergic nerve terminals is inhibited by adenosine.

  • PDF

Influences of Divalent Cations and Membrane Phosphorylation Inhibitors on $Na^+-Ca^{++}$ Exchange in Synaptosomes (이가 양이온과 세포막 인산화 반응의 억제제가 Synaptosome에서의 소듐-칼슘 교환이동에 미치는 영향)

  • Shin, Yong-Kyoo;Lee, Chung-Soo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.179-187
    • /
    • 1988
  • Verapamil, tetrodotoxin and tetraethylammonium chloride in the stated amount did not affect the $Na^{++}$ induced $Ca^{++}$ release. $Cd^{++}$ and $Zn^{++}$ significantly inhibited the $Na^{++}$ induced $Ca^{++}$ release. $Mn^{++}$ also inhibited $Na^+-Ca^{++}$ exchange. $Cd^{++}$ inhibited $Na^+-Ca^{++}$ exchange noncompetitively with an apparent inhibition constant (Ki) of $100\;{\mu}M$. $Cd^{++}$ caused loss of sulfhydryl group, whereas $Zn^{++}$ did not show any significant effect. $Cd^{++}$ and $Zn^{++}$ effectively inhibited $Na^+-Ca^{++}$ ATPase and slightly inhibited $Ca^{++}-Mg^{++}$ ATPase. Carbonyl cyanide chlorophenylhydrazone, 2,4-dinitrophenol and sodium arsenate stimulated the $Na^{++}$ induced $Ca^{++}$ release. Dibucaine and oligomycin slightly inhibited it. The results suggest that the $Na^+-Ca^{++}$ exchange on the synaptosomal plasma membrane may be not accomplished by ion channels. The $Na^+-Ca^{++}$ exchange is sensitively inhibited by $Cd^{++}$ and this transport process appears to be partially regulated by sulfhydryl groups of the synaptosomal plasma membrane. It is also postulated that $Na^+-Ca^{++}$ exchange is suppressed during the phosphorylation reaction of protein component on the neuronal membrane.

  • PDF

Pharmacological Characteristics of Non-cholinergic, Non-adrenergic Inhibitory Responses in Rabbit Portal Vein (가토 문맥에 있어서 비 코린성, 비 아드레나린성 억제성 반응에 관한 약리학적 특징)

  • Jung, Hyun-Ok;Hong, Ki-Whan
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.25-34
    • /
    • 1983
  • In this isolated study, it was aimed to elucidate the pharmacological properties of non-cholinergic, non-adrenergic inhibitory responses in the longitudinal strips of rabbit portal vein. 1) The portal vein responded inhibitory to electrical field stimulation in a frequency - and calcium-dependent manner after pretreatment with atropine, guanethidine and ergotamine, simultaneously. 2) When exogenous ATP, ADP, adenosine and cyclic AMP were added, respectively, they only showed the relaxations in the higher concentration without mimicing or affecting the inhibitory response induced by the electrical stimulation. The antagonist of purine substances, neither quinine nor isobutyl-methyl xanthine did influence on the relaxation. 3) The inhibitory response was significantly increased in the presence of $1{\mu}g/ml 4-amino-pyrineine (4-AP) which is $K^+-conduction$ blockade, but higher concentration of 4-AP directly decreased the vascular tone. 4) Though repeated application of ATP revealed the inhibitory effect on the relaxation, however, that of adenosine resulted rather increase of the amplitude. 5) After pretreatment with $^3H-adenosine$, $^3H-efflux$ induced by ATP or adenosine was markedly enhanced, but the electrical stimulation caused less $^3H-efflux$. 6) ^3H-efflux by electrical stimulation was not affected by the administration 4-AP, tetrodotoxin and adenosine.

  • PDF

Downward Decrease of Non-adrenergic Non-cholinergic Relaxation in the Rabbit Gastric Body (토끼 위체에서 비-아드레날린 비-콜린성 이완반응의 하행성 감소)

  • Hong, Eun-Ju;Choi, Ji-Eun;Park, Mi-Sun;Kim, Myung-Woo;Choi, Su-Kyung;Hong, Sung-Cheul
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.389-398
    • /
    • 1997
  • Non-adenergic non-cholinergic (NANC) innervation on the circular muscle of the rabbit gastric body was investigated by observing the magnitudy of relaxations induced by the elec trical field stimulation (EFS). Strips were cut from the greater curvature of the gastric body and stimulated with 5s trains of 0.5 ms pulses at 1-20 Hz, 40 V. The EFS induced transient frequency-dependent contractons, followed by a slowly recovering relaxation ewpecially at higher frequency of the EFS. In the presence of atropine and guanethidine, the contractions were virtually abolished, while the frequency-dependent relaxations by the EFS remained unaffected. The magnitude of relaxations progressively decreased as the location of the strips gets closer to the bottom of the gastric body. The relaxations were ablished by tetrodotoxin, indicating that their orgin is the NANC nerve stimulation. NG-nitro-L-arginine (L-NNA, 10-$100{\mu}M$), the inhibitor of nitric oxide (NO)-synthase, caused a concentration-dependent inhibition of the NANC relaxations. The inhibitory effects of L-NNA were not affected gy the location of the strips and were reversed by L-arginine, the precursor of NO-biosynthesis. Hemoglobin (20-$60{\mu}M$), a NO scavenger, inhibited the NANC relaxation s in a concentration-dependent manner. This inhibition was more prominent in the NANC relaxations observed in the lower portion of the gastric body and the relaxations induced ly lower frequencies of the EFS. Methyelne blue (10-$100{\mu}M$), an inhibitor of cytosolic guanylate cyclase, markedly inhibited the NANC relaxations, almost abolishing the response at a higher dose ($100{\mu}M$). These results suggest that NANX innervation of the rabbit gastric body progeressively decrease as he location of the strips gets closer to the bottom of the gastric body, and that the NANC relaxation is primarily mediated by NO-guanosine 3',5'-cyclic monophophate (cyclic GMP).

  • PDF

Characteristics of the inward current and its changes following fertilization in hamster eggs (햄스터 난자에서 관찰되는 내향전류의 성상과 수정후의 변화)

  • Han, Jae-hee;Hong, Seong-geun
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.280-289
    • /
    • 1998
  • Voltage-sensitive ion channels contribute to establishment of the cell excitablity and the generation of the cellular function. At hamster oocytes in the primitive stage during developing process, an inward current elicited by voltage pulses was found to be carried mainly by $Ca^{2+}$. Even at present, $Ca^{2+}$ channels serve as the most probable route to pass this inward current but there is no evidence of the presence of this channels in eggs. To date, both the characteristic properties and the physiological role in the early stage of development remain unclear. Here we examined the characteristic properties of the inward current and changes in this currents at unfertilized oocytes, fertilized zygotes and two-cell embryos using whole-cell voltage clamp technique. The inward current carried reportedly by $Ca^{2+}$ was remained following removing external $Ca^{2+}$ but completely abolished by further replacement of impermeants such as tetramethylammonium ion ($TMA^+$) or $choline^+$ instead of $[Na^+]_0$. Tetrodotoxin did not affect on this inward current remained at $[Ca^{2+}]_0$-free condition. Removal of $Na^+$ ion out of the experimental solution clearly decreased the current. After adding 2mM $Ca^{2+}$ to the $Na^+$-free media, the inward current was restored. Interestingly, this current carried by either $Ca^{2+}$ or $Na^+$ was decreased by the reduction of intracellular $Cl^-$ concentration, or by $Cl^-$ channel blockers such as niflumic acid, DIDS and SITS. When $Cl^-$ concentration was lowered without changes in other ionic components, this inward current was reduced. At fertilized oocytes and two-cell embryos, the inward current carried by $Ca^{2+}$ and $Na^+$ was severely reduced. Also $Cl^-$ component could not be observed. From these results, the inward current is composed of $Ca^{2+}$, $Na^+$ and $Cl^-$ component, suggesting that the channel carrying this inward current is not selective specifically to $Ca^{2+}$. During early stage of development, the voltage-sensitive ion current seems not to contribute essentially to the cell cleavage and differentiation. The loss of $Cl^-$ component after fertilization suggests that $Cl^-$ may play a role in maintaining the viability of unfertilized ova.

  • PDF

Non-adrenergic and Non-cholinergic Relaxation Mediated by Nitric Oxide in the Rabbit Gastric Fundus (가토 위저에서 Nitric oxide에 의해 매개되는 비-아드레날린 비-콜린성 이완반응)

  • Hong, Sung-Cheul;Choi, Ji-Eun;Han, Suk-Kyu;Kim, Young-Mi;Kim, Nam-Deuk;Park, Mi-Sun;Hong, Eun-Ju;Kim, Jin-Bo
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.149-157
    • /
    • 1994
  • The role of nitric oxide(NO) as neurotransmitter in non-adrenergic non-cholinergic (NANC) relaxation induced by electrical stimulation has been studied in circular muscle strips of the rabbit gastric fundus. In the presence of atropine and guanethidine, low frequency$(1{\sim}20\;Hz)$ and short trains (5s) of electrical stimulation induced the frequency-dependent relaxations which were not affected by adrenergic and cholinergic blockage, but abolished by tetrodotoxin, a nerve conductance blocker. L-NNA, a stereospecific inhibitor of NO biosynthesis, inhibited the relaxations induced by electrical stimulation but not affected the relaxation to exogenous NO. The effect of L-NNA was prevented by L-arginine, the precursor of the NO biosynthesis, but not by its enantiomer, D-arginine. Exogenous administration of NO$(10{\sim}100\;{\mu}M)$ caused the concentration-dependent relaxation which showed a similarity to those obtained with electrical stimulation. Hemoglobin, a NO scavenger, abolished the NO-induced relaxations and also markedly inhibited those evoked by electrical stimulation. Application of adenosine triphosphate$(1{\sim}10\;{\mu}M)$ induced concentration-independent contractions, but in high dose caused temporary contraction followed by relaxation which was not affected by L-NNA. Exogenous vasoactive intestinal polypeptide$(10{\sim}100\;nM)$ induced the concentration-dependent relaxation, while its effects were slower in onset and more persistent than those induced by short trains and low frequencies of electrical stimulation. Based on above results, it is suggested that NO is the principal neurotransmitter of NANC nerve at relaxation induced by short trains and low frequencies of electrical stimulation in the rabbit gastric fundus.

  • PDF

Regulatory Role of Cyclic Nucleotides in Non-Adrenergic Non-Cholinergic Relaxation of Lower Esophageal Sphincter from Dogs (개 하부식도괄약근의 비아드레날린성, 비콜린성 이완반응에 있어서 Cyclic Nucleotide의 역할)

  • Kim Young-Tae;Rhim Byung-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.303-313
    • /
    • 1997
  • The role of the lower esophageal sphincter(LES) is characterized by the ability to maintain tone and to relax allowing the passage of a bolus. It is known that LES relaxation during swallowing may be induced by the cessation of the tonic neural excitation and the activation of non-adrenergic, non-cholinergic(NANC) inhibitory neurons. Furthermore, it is generally accepted that the relaxation of the smooth muscle is mediated primarily by the elaboration of adenosine 3',5'-cyclic monophosphate(cyclic AMP) and guanosine 3',5'-cyclic mono-phosphate(cyclic GMP) via activation of adenylate cyclase and guanylate cyclase, respectively. It is thus possible that cyclic nucleotides might be a second messenger involved in neural stimulation-induced relaxation of LES, although a relationship between relaxation and changes in cyclic nucleotides after neural stimulation has not been established. The present study was performed to define the participation of cyclic nucleotides in the relaxation of LES of dog in response to neural stimulation. Electrical field stimulation(EFS) caused relaxation of the canine isolated LES strips in a frequency-dependent manner, which was eliminated by pretreatment with tetrodotoxin$(1{\mu}M)$, but not by atropine$(100{\mu}M)$, guanethidine$(100{\mu}M)$ and indomethacin$(10{\mu}M)$. The nitric oxide synthase inhibitors, $N^G-nitro-L-arginine$, $N^G-nitro-L-arginine$ methyl ester and $N^G-monomethyl-L-arginine$ inhibited EFS-induced relaxation. Additions of sodium nitroprusside, a nitrovasodilator and forskolin, a direct adenylate cyclase stimulant, caused a dose-dependent relaxation of LES smooth muscle. Effects of sodium nitroprusside and forskolin were selectively blocked by the corresponding inhibitors, methylene blue for guanylate cyclase and N-ethylmaleimide(NEM) for adenylate cyclase, respectively. Dibutyryl cyclic AMP and dibutyryl cyclic GMP caused a concentration-dependent relaxation of the LES smooth muscle tone, which was not blocked by NEM or methylene blue, respectively. However, both NEM and methylene blue caused significant antagonism of the relaxation in LES tone in response to EFS. EFS increased the tissue cyclic GMP content by 124%, whereas it did not affect the tissue level of cyclic AMP. Based on these results, it is suggested that one of the components of canine LES smooth muscle relaxation in response to neural stimulation is mediated by an increase of cyclic GMP via the activation of guanylate cyclase. Additionally, an activation of cyclic AMP generation system was, in part, involved in the EFS-induced relaxation.

  • PDF