• Title/Summary/Keyword: Tetrapyrroles

Search Result 6, Processing Time 0.018 seconds

Examination of the Fragmentation Behavior of Hemin and Bilin Tetrapyrroles by Electrospray Ionization and Collision-induced Dissociation

  • Sekera, Emily R.;Wood, Troy D.
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.91-94
    • /
    • 2018
  • Bilin tetrapyrroles are metabolic products of the breakdown of porphyrins within a species. In the case of mammals, these bilins are formed by the catabolism of heme and can be utilized as either biomarkers in disease or as an indicator of human waste contamination. Although a small subset of bilin tandem mass spectrometry reports exist, limited data is available in online databases for their fragmentation. The use of fragmentation data is important for metabolomics analyses to determine the identity of compounds detected within a sample. Therefore, in this study, the fragmentation of bilins generated by positive ion mode electrospray ionization is examined by collision-induced dissociation (CID) as a function of collision energy on an FT-ICR MS. The use of the FT-ICR MS allows for high mass accuracy measurements, and thus the formulas of resultant product ions can be ascertained. Based on our observations, fragmentation behavior for hemin, biliverdin and its dimethyl ester, phycocyanobilin, bilirubin, bilirubin conjugate, mesobilirubin, urobilin, and stercobilin are discussed in the context of the molecular structure and collision energy. This report provides insight into the identification of structures within this class of molecules for untargeted analyses.

Natural Photodynamic Activity of 5-Aminolevulinic Acid Produced by E. coli Overexpressing ALA Synthase from Bradyrhizobium japonicum

  • Chon Sang-Uk;Jung Sun-Yo;Boo Hee-Ock;Han Seung-Kwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.356-361
    • /
    • 2006
  • The present study was conducted to determine plant growth and physiological responses of corn, barnyardgrass, and soybean to ALA (5-aminolevulinic acid). ALA effect on early seedling growth of test plants was greatly concentration dependant, suggesting that it inhibits at higher concentrations. No significant difference in herbicidal activity of two types of ALA on plant height and weight of test plants was observed. Barnyardgrass was the most sensitive to ALA and followed by corn and soybean, indicating that both crop plants were less affected by ALA concentration as well as different growth stages than barnyardgrass. Greatly reduced chlorophyll contents from leaves of three plant species were observed with increasing of ALA concentration. Compared with untreated controls, higher amounts of three tetrapyrroles were detected from three crop plants, indicating more accumulation in ALA-treated plants. The differential selectivity among plant species would be explained with the differences in tetrapyrrole accumulating capabilities, the susceptibility of various greening groups of plant species to the accumulation of various tetrapyrroles, and their metabolism in various plant tissues. The results indicate that negative biological potential of ALA exhibited differently on plant species, and that the photodynamic herbicidal activity against susceptible plants highly correlated with the extent of tetrapyrrole accumulation by the species.

Herbicidal Activity of $\delta$-aminolevulinic Acid on Several Plants as Affected by Application Methods

  • Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.50-55
    • /
    • 2003
  • Herbicidal activity of $\delta$-aminolevulinic acid(ALA), an intermediate for the biosynthesis of tetrapyrroles such as chlorophyll, heme, bacteriochlorophyll, and vitamin $\textrm{B}_{12}$ analogues, was examined to determine the variation in phytotoxic potential against different plant species as affected by different application methods. Seed-soaking treatment, ALA at low concentrations did not affect shoot and root lengths of test plants while at highest concentration reduced them by 20 to 30%. Alfalfa showed the most tolerant response to ALA in both pre- and post-emergence application, and followed by rice. When applied with pre-emergence, cotyledons of Chinese cabbage were severely bleached with 0.5 mM of ALA at 24 hrs after application, and root growth of rice, barnyard grass, and alfalfa was significantly inhibited with increasing of concentration. With post-emergence application, ALA at 2 to 4 mM reduced shoot and root growths of Chinese cabbage and barnyard grass completely. Herbicidal effects of ALA were more enhanced in the treatment combined with 2,2-dipyridyl sthan single application in barnyard grass and Chinese cabbage. The results suggest that alfalfa was the most tolerant to ALA among the tested plants, and that post-emergence application of ALA exhibited greatest photodynamic activity against tested plants.

LIGHT-DEPENDENT CELLULAR LEAKAGE FROM CUCUMBER COTYLEDON DISCS TREATED WITH $\delta$-AMINOLEVULINIC ACID, OXYFLUORFEN, AND ROSE BENGAL

  • Lee, Hee-Jae;Cho, Kwang-Yun
    • Journal of Photoscience
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • When cucumber (Cucumis sativus L.) cotyledon discs were floated on $\delta$-aminolevulinic acid, oxyfluorfen, or rose bengal solution under light condition following 20 h dark incubation, rapid electrolyte leakage from the tissues occurred. The electrolyte leakage from the tissues was dependent on the compounds treated, their concentrations, and the duration of light exposure to the tissues. Dark incubation before exposure to continuous white light enhanced electrolyte leakage from the tissues treated with the compounds and reduced lag period for the activity of the compounds. Electrolyte leakage from the treated tissues was greatly influenced by the light intensity to which they were exposed. Higher light intensities stimulated electrolyte leakage and reduced lag period. Porphyrin biosynthesis inhibitors, gabaculine and 4,6-dioxoheptanoic acid, completely inhibited electrolyte leakage from the oxyfluorfen-treated tissues. Protection against the activity of $\delta$-aminolevulinic acid from electrolyte leakage was complete with 4,6-dioxoheptanoic acid, but not with gabaculine. However, gabaculine and 4,6-dioxoheptanoic acid gave no such protection against rose bengal activity. In summary, our results indicate that $\delta$--aminolevulinic acid, oxyfluorfen, and rose bengal exert their effects by causing electrolyte leakage from the treated tissues in a similar manner, except that oxyfluorfen has an apparent lag period for its action on electrolyte leakage increase. All above compounds require preincubation of treated tissues in darkness and subsequent light exposure with a high intensity for their maximal activities. Our results also support that in the presence of light, $\delta$-aminolevulinic acid and oxyfluorfen cause cellular damage through the indirect generation of singlet oxygen from accumulated tetrapyrroles of porphyrin pathway, whereas rose bengal causes cellular damage through the direct generation of singlet oxygen.

  • PDF

Mechanism of Protoporphyrinogen Oxidase-inhibiting Herbicide, Oxyfluorfen Tolerance in Squash leaves of Various Ages (Protoporphyrinogen Oxidase 저해형 제초제 Oxyfluorfen에 대한 호박 엽령별 내성기작)

  • Kuk, Yong-In;Yun, Young-Beom
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.111-121
    • /
    • 2010
  • Differential tolerance to protoporphyrinogen oxidase (Protox)-inhibiting herbicides, oxyfluorfen was observed between leaf ages in squash. Physiological responses to oxyfluorfen, including leaf injury, cellular leakage, accumulation of tetrapyrroles, and antioxidative enzymes activity, were investigated in leaf age classes of squash to identify mechanisms of oxyfluorfen tolerance. Leaf 1, 2, and 3 injuries for Joongangaehobak were >10,000, 1,286, and 1.6-fold higher than that of leaf 4, after treatment of oxyfluorfen. On the other hand, leaf 1, 2, and 3 injuries for Sintowjahobak were 725, 366, and >0.6-fold higher than that of leaf 4, after treatment of oxyfluorfen. However, in contrast to oxyfluorfen treatment results, leaf injury of squash leaf 4 treated with paraquat was much smaller than in leaves 1, 2 and 3. Electrolyte leakage from the tissues treated with oxyfluorfen was higher in the youngest leaf (Leaf 4) than in the older leaves 1, 2, and 3. Differential leaf response to oxyfluorfen of squash appears to be due in large part to differences in protoporphyrin IX (Proto IX), Mg-Proto IX, and Mg-Proto IX monomethyl ester accumulation in treated leaves. In contrast, leaf 4 had higher activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase than leaf 1 after treatment with oxyfluorfen. However, the induction in antioxidant activity in leaf 4 was not enough to overcome the toxic effects of a Protox inhibitor, oxyfluorfen, so the leaf eventually died.

Cobalt complex structure of the sirohydrochlorin chelatase SirB from Bacillus subtilis subsp. spizizenii (Bacillus subtilis subsp. spizizenii의 sirohydrochlorin chelatase SirB의 코발트 복합체 구조)

  • Nam, Mi Sun;Song, Wan Seok;Park, Sun Cheol;Yoon, Sung-il
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Chelatase catalyzes the insertion of divalent metal into tetrapyrrole and plays a key role in the biosynthesis of metallated tetrapyrroles, such as cobalamin, siroheme, heme, and chlorophyll. SirB is a sirohydrochlorin (SHC) chelatase that generates cobalt-SHC or iron-SHC by inserting cobalt or iron into the center of sirohydrochlorin tetrapyrrole. To provide structural insights into the metal-binding and SHC-recognition mechanisms of SirB, we determined the crystal structure of SirB from Bacillus subtilis subsp. spizizenii (bssSirB) in complex with cobalt ions. bssSirB forms a monomeric ${\alpha}/{\beta}$ structure that consists of two domains, an N-terminal domain (NTD) and a C-terminal domain (CTD). The NTD and CTD of bssSirB adopt similar structures with a four-stranded ${\beta}-sheet$ that is decorated by ${\alpha}-helices$. bssSirB presents a highly conserved cavity that is generated between the NTD and CTD and interacts with a cobalt ion on top of the cavity using two histidine residues of the NTD. Moreover, our comparative structural analysis suggests that bssSirB would accommodate an SHC molecule into the interdomain cavity. Based on these structural findings, we propose that the cavity of bssSirB functions as the active site where cobalt insertion into SHC occurs.