• 제목/요약/키워드: Tetrandrine

검색결과 9건 처리시간 0.023초

Anti-inflammatory effects of Fangchinoline and Tetrandrine

  • Kim, Hack-Seang;Park, Hong-Serck;Kim, Young-Soo;Oh, Ki-Wan
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.89-89
    • /
    • 1997
  • Fangchinoline and Tetrandrine are the major alkaloids of bis-benzylisoquinoline structure isolated from Stephania tetrandra which has been used as anti-inflammatory drug. The purpose of this study was to investigate the inhibitory effects of Fangchinoline and Tetrandrine on cyclooxygenase, interleukin-5(IL-5) and interleukin-6 (IL-6) as anti-inflammatory mechanisms. Tetrandrine at 100 ${\mu}$M did not show any inhibitory effect but Fangchinoline showed 31% of inhibition on cyclooxygenase. In addition, in mIL-5-dependent Y16 proliferation assay, Tetrandrine at 30 ${\mu}$M exhibited more than 50% of inhibition but Fangchinoline did not any effect. However in hIL-6-dependent MH60 proliferation assay, more than 50% of inhibition was observed by both of Fangchincline and Tetrandrine at 30 ${\mu}$M. Fangchinoline and Tetrandrine also showed anti-inflammatory effects by croton oil induced mouse ear edema test.

  • PDF

Tetrandrine induces mitochondria-dependent apoptosis in HepG2 cells

  • Hee, Oh-Seon;Lee, Bang-Wool;Lee, Byung-Hoon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.278.2-279
    • /
    • 2002
  • Tetrandrine is a bis-benzyl isoquinoline alkaloid derived from the root of Stephania tetrandra S. Moore. which was reported to elicit in vitro cytotoxic effect on HeLa cells and in vivo supprresive effects on mouse ascite tumor. Tetrandrine also induced apoptosis in a various cell lines. Recent studies have revealed that mitochondria has been shown to play an important role in the regulation of apoptotic processes. (omitted)

  • PDF

Effects of Tetrandrine and Fangchinoline on Human Platelet Aggregation, Thromboxane B$_2$ Formation and Blood coagulation.

  • Zhang, Yong-He;Kim, Hack-Seang;Yun, Yeo-Pyo;Lee, Hyung-Kyu
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.177-177
    • /
    • 1998
  • In the previous report, tetrandrine (TET) and fangchinoline (FAN) showed antithrombotic and antiplatelet aggregation activities. The present study was undertaken to investigate the effects of tetrandrine and fangchinoline on human platelet aggregation, formation of thromboxane B$_2$ and coagulation of platelet poor plasma. TET and FAN inhibited platelet activating factor (PAF) induced human platelet aggregation, but didn't inhibit the specific binding of PAF to its receptor. Meanwhile, TET and FAN also inhibited PAF, thrombin and arachidonic acid induced thromboxane B$_2$ formation in human washed platelets. In addition, neither TET nor FAN showed any anticoagulation activities in the measurement of the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) using human platelet poor plasma. These results suggest that antithrombotic effects of TET and FAN in mice may be mainly related to the antiplatelet aggregation activities, and the antiplatelet aggregation effects may be related to the intracellular messenger system such as TXA$_2$ formation etc., but not to the binding of PAF to PAF-receptor on the platelet membrane directly.

  • PDF

Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation

  • Ma, Ji-wei;Zhang, Yong;Ye, Ji-cheng;Li, Ru;Wen, Yu-Lin;Huang, Jian-xian;Zhong, Xue-yun
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.186-193
    • /
    • 2017
  • Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to have a radiosensitization effect on tumors. However, its effects on human glioma and the specific molecular mechanisms of these effects remain unknown. In this study, we demonstrated that Tet has a radiosensitization effect on human glioma cells. It has been hypothesized that Tet has a radiosensitization effect on glioma cells by affecting the glioma cell cycle and DNA repair mechanism and that ERK mediates these activities. Therefore, we conducted detailed analyses of the effects of Tet on the cell cycle by performing flow cytometric analysis and on DNA repair by detecting the expression of phosphorylated H2AX by immunofluorescence. We used western blot analysis to investigate the role of ERK in the effect of Tet on the cell cycle and DNA repair. The results revealed that Tet exerts its radiosensitization effect on glioma cells by inhibiting proliferation and decreasing the expression of phosphorylated ERK and its downstream proteins. In summary, our data indicate that ERK is involved in Tet-induced radiosensitization of glioma cells via inhibition of glioma cell proliferation or of the cell cycle at G0/G1 phase.

Lysimachia foenum-graecum Herba Extract, a Novel Biopesticide, Inhibits ABC Transporter Genes and Mycelial Growth of Magnaporthe oryzae

  • Lee, Youngjin
    • The Plant Pathology Journal
    • /
    • 제32권1호
    • /
    • pp.8-15
    • /
    • 2016
  • To identify a novel biopesticide controlling rice blast disease caused by Magnaporthe oryzae, 700 plant extracts were evaluated for their inhibitory effects on mycelial growth of M. oryzae. The L. foenum-graecum Herba extract showed the lowest inhibition concentration ($IC_{50}$) of $39.28{\mu}g/ml$, which is lower than the $IC_{50}$ of blasticidin S ($63.06{\mu}g/ml$), a conventional fungicide for rice blast disease. When treatments were combined, the $IC_{50}$ of blasticidin S was dramatically reduced to $10.67{\mu}g/ml$. Since ABC transporter genes are involved in fungicide resistance of many organisms, we performed RT-PCR to investigate the transcriptional changes of 40 ABC transporter family genes of M. oryzae treated with the plant extract, blasticidin S, and tetrandrine, a recognized ABC transporter inhibitor. Four ABC transporter genes were prominently activated by blasticidin S treatment, but were suppressed by combinational treatment of blasticidin S with the plant extract, or with tetrandrine that didn't show cellular toxicity by itself in this study. Mycelial death was detected via confocal microscopy at 24 h after plant extract treatment. Finally, subsequent rice field study revealed that the plant extract had high control efficacy of 63.3% and should be considered a biopesticide for rice blast disease. These results showed that extract of L. foenum graecum Herba suppresses M. oryzae ABC transporter genes inducing mycelial death and therefore may be a potent novel biopesticide.