• Title/Summary/Keyword: Tetrahedral meshing

Search Result 15, Processing Time 0.016 seconds

Flow and dispersion around storage tanks -A comparison between numerical and wind tunnel simulations

  • Fothergill, C.E.;Roberts, P.T.;Packwood, A.R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.89-100
    • /
    • 2002
  • Accidental gaseous losses from industrial processes can pose considerable health and environmental risks but assessing their health, safety and environmental impact is problematic. Improved understanding and simulation of the dispersion of emissions in the vicinity of storage tanks is required. The present study aims to assess the capability of the turbulence closures and meshing alternatives in a commercially available CFD code for predicting dispersion in the vicinity of cubes and circular cylindrical storage tanks. The performance of the $k-{\varepsilon}$ and Reynolds Stress turbulence models and meshing alternatives for these cases are compared to experimental data. The CFD simulations are very good qualitatively and, in many cases, quantitatively. A mesh with prismatic elements is more accurate than a tetrahedral mesh. Overall the Reynolds stress model performs slightly better than the $k-{\varepsilon}$ model.

Automated Adaptive Tetrahedral Element Generation for Three-Dimensional Metal Forming Simulation (삼차원 소성가공 공정 시뮬레이션을 위한 지능형 사면체 요소망 자동생성)

  • Lee M.C.;Joun M.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.189-194
    • /
    • 2006
  • In this paper, an automated adaptive mesh generation scheme, based on an advancing-front-Delaunay method, is presented fur finite element simulation of three dimensional bulk metal farming processes. Basic approach is introduced in detail, including a surface meshing and volume meshing technique and a mesh density control scheme. The presented approach is applied to automatic forging simulation in order to evaluate the effect of the developed schemes. Comparison shows a good agreement between required mesh density and generated mesh density, implying that the presented approach is appropriate for automatic mesh generation in metal forming simulation.

On Measuring the Quality of 3-D Triangulation

  • Park, Joon-Young
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.2
    • /
    • pp.154-165
    • /
    • 1994
  • A new criterion, the solid angle, is introduced to measure the Quality of tetrahedral mesh. This criterion is compared with the existing Delaunay triangulation criterion. The properties of solid angles have been studied and are proposed for utilization in 3-D meshing algorithms. Furthermore, difficulties of developing a 3-D algorithm that provides a lower bound on the smallest angle have been discussed.

  • PDF

On Quality Triangulation in Three-Dimensional Space (삼차원 공간상에서의 질적인 삼각화에 관한 연구)

  • Park, Joon-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.215-222
    • /
    • 1997
  • This paper deals with the problem of generating a uniform tetrahedral mesh which fills a 3-D space with the tetrahedra which are close to the equilateral tetrahedra as possible. This problem is particularly interesting in finite element modeling where a fat triangulation minimizes the error of an analysis. Fat triangulation is defined as a scheme for generating an equilateral triangulation as possible in a given dimension. In finite element modeling, there are many algorithms for generating a mesh in 2-D and 3-D. One of the difficulties in generating a mesh in 3-D is that a 3-D object can not be filled with uniform equilateral tetrahedra only regardless of the shape of the boundary. Fat triangulation in 3-D has been proved to be the one which fills a 3-D space with the tetrahedra which are close to the equilateral as possible. Topological and geometrical properties of the fat triangulation and its application to meshing algorithm are investigated.

  • PDF

Optimization of Design of Safety Block by Structural Analysis (구조해석을 통한 안전블록 설계 최적화)

  • Nam, K.W.;Gwon, H.S.;Son, C.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.71-76
    • /
    • 2010
  • The safety block which prevents drop of laborers at high altitude was analyzed by finite element method. Elastic analysis was done by Ansys ver. 11.0. and tetrahedral meshing was used. As load applied more vertically at the fixed face of saw tooth, the stress concentration became smaller and the load distributed broader. When load worked at saw tooth and the shape was more straight to the direction of load, most stresses except principal stress became smaller. When the area of the load increased, principal stress and equivalent stress could be decreased simultaneously. A principal stress and other various stresses occurred in 3D shape, therefore revised model which has smaller equivalent stress than other models shows excellence on the stability and the credibility.