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On Measuring the Quality of 3-D Triangulation

Joon-Young Park
Dept. of Industrial Engineering, Han Sung University

Abstract

A new criterion, the solid angle, is introduced to measure the quality of
tetrahedral mesh. This criterion is compared with the existing Delaunay triangu-
lation criterion. The properties of solid angles have been studied and are
proposed for utilization in 3-D meshing algorithms. Furthermore, difficulties of
developing a 3-D algorithm that provides a lower bound on the smallest angle have
been discussed.

1. Introduction

Finite element method is the most widely used scheme for the engineering
analysis. In the finite element method, an important step is the mesh generation
from the boundary description of the part. This divides the interior of the object
into simple elements of a type known to the analysis program. Before a finite
element analysis is performed, a finite element discretization of the problem must
be generated. This discretization is generated for a given domain and a set of
boundary conditions in a manner consistent with the differential equations used to
describe the physical behavior being analyzed. In practice, quadrilaterals and
triangles in 2-D, or bricks, wedges and tetrahedra in 3-D are used for
discretization. Simplex elements (i.e., triangles in 2-D and tetrahedra in 3-D) are
preferred because they accommodate complex boundaries of the object.

Since the mesh is a discrete approximation of the continuous interior of the
object, it is important that the difference between mesh and object be small.
Meshes were generated manually until the early 1960s. Since then, computers
have been used to assist the task of discretizing complex objects. Programs for
mesh generation have supported visualization and verification of the structure of
nodes within elements and elements within meshes. Many algorithms have been
developed to automate the mesh generation process [Ho-Le, 1988]. After the
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mesh generation, these algorithms use an iterative smoothing process to complete
the pre-processing of the finite element analysis. In that proce’és, elements with
small angles are removed. Even with the smoothing process, most algorithms
provides a guaranteed lower bound of the smallest angle in the mesh, and human
intervention may sometimes be required to improve the mesh. Since the error in
the finite element analysis is proportional to the smallest angle in a mesh [Strang.
19761, its lower bound guarantee is significant. With the same rationale, 3-I)
elements (tetrahedra) of the mesh need to be as close as possible to equilateral
tetrahedra in order for mesh quality to be improved.

There have been a few attempts to improve the mesh quality by achieving
equilateral triangulations as possible. Some algorithms achieve a guaranteed
lower bound of the smallest angle of a mesh. For example, Rivara (1987) showed
that the lower bound of the smallest angle in the mesh can be a half of the
smallest angle in the initial triangulation. The triangulation is done by bisecting
the longest edge of a triangle. To avoid the conformal problem, the process
should be iteratively applied until conformity is satisfied. Field (1987) improved
the mesh quality using the criterion of the Delaunay triangulation. Baker,
Grosse, and Rafferty (1988} have presented a 2-D triangulation algorithm with a
lower bound guarantee. Also, there are several 3-D triangular meshing
algorithms. Many of these algorithms use Delaunay triangulation criterion. Th=
reason for using this criterion is conjectured that the criterion generates a quality
mesh in 2-D. However, according to a survey [Dey 1991], none of them
generates a guaranteed quality mesh in 3-D. In this paper, a new criterion for
measuring the quality of the tetrahedral mesh is introduced and a triangulation
method using this criterion is investigated.

2. Measure of Tetrahedron

The most widely used criterion to measure the quality of mesh in 2-D is the face
angle, the angle between two edges [Field, 1987 : Rivara, 1987]. If the smallest
face angle in a given mesh is increased, mesh quality is improved. The Delaunay
triangulation in 2-D is proved to guarantee this criterion of maximizing the
smallest angle [Joe, 1986]. Many algorithms in 3-D are also using Delaunay
triagulation because it results a valid triangulation when a point set is given
However, in 3-D, Delaunay triangulation can generate flat tetrahedra even the
point set is uniformly distributed. These flat tetrahedra are reported as ‘slivers’
and they are undesirable in most applications | Cavendish, 1985]. These elements
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exist because the Delaunay triangulation 3-D are formed in a way to increase a
face angle which does not guarantee the improvement of the mesh quality as
explained below.

(a) (b)

{ Figure 1 ) Flat Tetrahedron with Large Face Angles and Small Dihedral Angles

In Figure 1, three vertices of a tetrahedron form an equilateral triangle and the
fourth vertex lies very close to the centroid of the equilateral triangle. Figure |
{a) shows a top view and Figure 1 (b) shows a side view of the tetrahedron.
Every face angle in the above tetrahedron is bigger than 30 degrees but the
tetrahedron is far from the equilateral tetrahedron. The flatness of the tetra
hedron comes from the small dihedral angle which is the angle between twn
faces.

However, increasing the dihedral angle alone does not guarantee the improve-
ment of the mesh quality. For example, in Figure 2, three vertices of &
tetrahedron form an equilateral triangle and the fourth vertex lies far above the
centroid of the equilateral triangle.

{ Figure 2 > Sharp Tetrahedron with Small Face Angles and Large Dihedral Angles
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The smallest dihedral angle in the above tetrahedron is close to 60 degrees (for
example, dihedral angle between triangle ABC and ABD), but the tetrahedron is
far from the equilateral tetrahedron. The sharpness of the tetrahedron comes
from the small face angle (£ BAC:. Therefore, face angles and dihedral angles
should be increased at the same time to guarantee the improvement of the mesh
quality.

In this paper, therefore, the solid angle is introduced to measure the quality of
the mesh in 3-D. The solid angle (a three dimensional angle) is defined as
follows.

Definition 1 Solid Angle [ Coxeter, 1965

A solid angle is defined as a surface in space consisting of all half-lines
which have a common initial point (the vertex, and which pass through
a closed curve or a polygon (hence, a nappe of a conical surface). The
solid angle subtended at a point O by a portion of a surface is the solid |
angle of all halflines from O which passes through the boundary of the \
portion. |

{ Figure 3 ) Measure of a Solid Angle

The notion of a solid angle in space generalizes the notion of an angle in the
plane. The measure of a solid angle is the area it intercepts on a sphere of unit
radius (when its vertex is at the center of the sphere); this is taken as the number
of steradians in the angle, one steradian being a solid angle which intercepts a
unit area on the unit sphere. For example, the solid angle of a right tetrahedron
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is n/2 steradians. A unit sphere has a total surface area of 4n which is the
maximum value of the solid angle.

{ Figure 4 > Solid Angle of a Tetrahedron

The following equation represents the area of a triangle (A) generated by
intersecting a tetrahedron with a unit sphere as shown in Figure 4.

A=20A+B+C~-n) (1)

where, A, B, and C are the angles between a pair of great circles which pass
through each edge of the triangle on the unit sphere.

3. Basic Operators in 3-D

In this section, a 3-D triangulation scheme is investigated using the solid angle
criterion explained earlier. Although a complete algorithm is not provided in this
paper, the investigation is expected to provide insights which lead to a 3-D
triangulation algorithm. The basic approach of the triangulation scheme is to
planting nodes first and connect these nodes to form tetrahedral elements.

The planting of one node in a tetrahedron can be categorized into three
operators (Figure 5) depending on the node location: NI (Node-in-Interior), NF
(Node-on-Face), and NE (Node-on-Edge). NI divides one tetrahedron into four
smaller tetrahedra. Every solid angle is divided into three smaller solid angles.
NI does not have a conformity problem (Figure 5 [a]). NF divides one tetra-
hedron into three smaller tetrahedra. One solid angle is divided into three smaller
solid angles, and each of the other three solid angles is divided into two smaller
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solid angles. Conformity should be met in one face (Figure 5 [b]). NE divides
one tetrahedron into two smaller tetrahedra. Two solid angles are divided into
two smaller solid angles each and the other two solid angles remain the same.
Conformity should be met in two faces (Figure 5 [c¢] ).

(at NI (b) NF (c) NE

( Figure 5) Three Operators in a Tetrahedron

When two tetrahedra are met, the resulting hexahedron is always convex if the
shared triangle is the largest triangle (LT) in the region [Park, 1991]. Depending
on the new node location in this convex region, several operators can be
considered (Figure 6). When a new node is on LT, NF can be treated as a
degenerate case of NI, since LT is inside of the convex region. Among these
operators, it can be noted that NE is the most desirable operator in maximizing the
smallest solid angle, since it divides an existing solid angle into at most twa
angles, and since it is the only operator which shortens the existing edge
However, because of the conformity problem, NI and NF are also necessary.

- -~

(a) Hexahedron (b) NI or NF (c) NE

{ Figure 6 ) Three Operators in a Hexahedron
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4. Edge Shortening Schemes

In order to decompose a given object into tetrahedra with a pre-defined element
size, edge shortening schemes are necessary. Since NI and NF do not reduce the
length of existing edges, the solid angles of elements will be degenerated if
these operators are applied alone. Therefore, NE and ES (Edge Swapping) are
discussed as edge shortening schemes.

4.2 Node Planting on Existing Edges (NE)

When NE is applied, all tetrahedra connected to the edge should be triangulated
in order to satisfy conformity (Figure 7). LE in LT or LE in the mesh can be
used to plant a new node. When LE in LT of the mesh is used, only two solid
angles facing LT are guaranteed to be greater than the angle in an equilateral
tetrahedron, and there is no guarantee that LE in the mesh is shortened. When
LE in the mesh is used, solid angles facing the triangles, which share LE, are not
necessarily bigger than an angle in an equilateral tetrahedron. NE reduces the
element size by shortening LE length. However, since it does not enlarge small
solid angles by changing the connectivity, this operator may result in degeneracies
in the solid angle of the elements.

N\ /4

(a) LE Surrounding Tetrahedra (b) NE on LE

{ Figure 7 } Triangulation after NE

4.2 Edge Swapping Operator (ES)

In 2-D, LE defines a convex quadrilateral in which the swapping operation is
always possible. In 3-D, however, LE defines an xn-faceted polyhedral region
which 1s not necessarily convex and the swapping operation is not always possible.
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{ Figure 8) Degenerate Case 0f Topological Operator

In Figure 8, LE is shared by three tetrahedra. Since the 3-D polygon abc is
already simplex. the swapping is not possible. In this case, LE can be deleted
satisfying a valid triangulation.

It e et rexmrredevepaacaccaan

(a) LE Surrounding Tetrahedra (b) ES of LE

( Figure 9 > Non-unigue Swapping

In Figure 9, LE is shared by four tetrahedra. In this case, the swapping operation
is not uniquely defined, since there are two ways of triangulating the quadrilateral
surrounding the LE after the swapping operation.

~ Figure 10 > Triangulation with Multiple Edges after Swapping
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In Figure 10, LE is shared by more than four tetrahedra. In this case, extra
edges are necessary to complete the triangulation after the swapping operatiorn.
Unlike the NE operator, the ES operator changes the connectivity of the edges for
the two end vertices of LE: hence enlarging the small solid angles. We can also
notice that one extra edge creates four more solid angles.

Alternating between NE and ES should be determined carefully, since in 3-D
more than one measure could be considered for node planting and triangulation.
These measures are LE in the mesh, and LE in LT. Triangulation schemes also
should be determined after the application of ES. The following table summarizes
the effect of the ES operation, where # is the number of tetrahedra shared by LE.

{ Table 1) Changes of ES when n 2 4

| Before ES After ES
L. ar e e, [ S . . e e e e e+ .J‘
. Total # of Tetrahedra n 2n—4 ‘
. L e -
Max # of Solid Angles . "2
from one Vertex
Max # of Tetrahedra " - 4
Shared by an Edge |

From the Table 1, we can notice that ES creates more elements, while
decreasing the maximum number of solid angles from one vertex and the
maximum number of tetrahedra shared by an edge. Note that the maximum
number of tetrahedra shared by an edge is drastically decreased from = to 4.
Therefore, this operator improves mesh quality topologically. This topological
improvement is important since it can lead to a geometrical improvement after
applying smoothing schemes. However, if the goal is to guarantee a lower bound
of the smallest solid angle, this geometrical improvement of the mesh quality has
to be invested further.

5. Difficulty of 3-D Triangulation

There are several difficulties in 3-D triangulation compared to 2-D. For
example, the number of elements shared by one edge is at most two in 2-D.
However, the number of elements shared by one edge in 3-D could be up to O(»),
where » is the number of elements in the mesh. The following table summarizes
the worst case adjacency information of 2-D and 3-D.
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¢ Table 2 ) Adjacency Information ot 2-D and 3-D

k 2D { 3.D
e S —— -

‘WYe_I'_th Adjacency ] N _OS n) ) O(n)_ ]
_’ Edge Adjacency 1 2 % On)
FaceAdacency | NA |z

As we can see from the above table, there is an analogy between the edge
adjacency in 2-D and the face adjacency in 3-D. Using this analogy, 3-D
triangulation can be approached as the similar method to the 2-D triangulation of
{Park 1991]. In order to avoid the degenerate case of creating solid angles with
zero steradian, the swapping operator is necessary. However, since the swapping
operator can not be defined by a face, edge swapping should take O (%) compu-
tation time for each edge.

6. Conclusion

We investigated a solid angle as a new criterion for measuring the quality of 3-D
mesh elements. This new criterion was compared with the existing Delaunay
triangulation criterion. The properties of solid angles have been studied and are
proposed for utilization in a 3-D meshing algorithm. Furthermore, difficulties of
developing a 3-D algorithm that provides a lower bound on the smallest angle have
been discussed.

A possible lower bound of the solid angle could be conjectured by the following
process. One solid angle in an equilateral tetrahedron is 0.175x from equation (1).
In the hexahedral convex region, defined by the merging of two tetrahedra
sharing the largest triangle, NF and NI divide the largest solid angle into three
smaller solid angles. From this observation, the lower bound in 3-D could be
conjectured as 0.1757/3. In this case the number of tetrahedra shared by one
edge could be up to O{n), where » is the total number of tetrahedra. Thus far,
we do not have a way to handle » tetrahedra at the same time while satisfying the
lower bound of the smallest solid angle. A detailed algorithm of 3-D remains as a
future research task.
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