• Title/Summary/Keyword: Tetrahedral Geometry

Search Result 35, Processing Time 0.033 seconds

A Study on the Vector Space by Taking the Tetra-cosine Rule (Tetra-cosine Rule 에 의한 Vector Space고찰)

  • 김건희;이수종;김홍건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.389-394
    • /
    • 1997
  • Consider a tetrhedron is composed of six dihedral angles .phi.(i=1,2..., 6), and a vertex of a tetrahedron is also three dihedral angles. It will assume that a vertex A, for an example, is composed of there angles definded such as .alpha..betha. and .gamma. !. then there is a corresponding angle can be given as .phi1.,.phi2.,.phi3.. Here, in order to differentiate between a conventional triangle and dihedral angle, if a dihedral angle degined in this paper is symbolized as .phi..LAMBDA.,the value of cos.theta.of .phi./sab a/, in a trigonometric function rule,can be defined to tecos.phi..LAMBD/sab A/., and it is defined as a tetradedral cosine .phi. or simply called a tecos.phi.. Moreover, in a simillar method, the dihedral angle of tetrahedron .phi..LAMBDA. is given as : value of sin .theta. can defind a tetra-sin.phi..LAMBDA., and value of tan .theta. of .phi..LAMBDA. is a tetra-tan .phi..LAMBDA. By induction it can derive that a tetrahedral geometry on the basis of suggesting a geometric tetrahedron

  • PDF

TET2MCNP: A Conversion Program to Implement Tetrahedral-mesh Models in MCNP

  • Han, Min Cheol;Yeom, Yeon Soo;Nguyen, Thang Tat;Choi, Chansoo;Lee, Hyun Su;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.389-394
    • /
    • 2016
  • Background: Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET2MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. Materials and Methods: TET2MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET2MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. Results and Discussion: To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET2MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. Conclusion: In the present study, we have developed a computer program, TET2MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code.

A Novel Analytic Approach for the Forward Kinematics of the 3-6-type Stewart Platform using Tetrahedron Configurations (사면체 조합을 이용한 3-6형태의 스튜어트 플랫폼의 정기구학의 새로운 해석법)

  • 송세경;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.430-430
    • /
    • 2000
  • This paper presents a new analytic approach using tetrahedrons to determine the forward kinematics of the 3-6-type Stewart platform. By using of the tetrahedral geometry, this approach has the advantage of greatly reducing the complexity of formulation and the computational burden required by the conventional methods which have been solved the forward kinematics with three unknown angles. As a result, this approach allows a significant abbreviation in the formulations and provides an easier means of obtaining the solutions. The proposed method is well verified through a series of numerical simulation.

  • PDF

Development of Automated J-Integral Analysis System for 3D Cracks (3차원 J적분 계산을 위한 자동 해석 시스템 개발)

  • 이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.74-79
    • /
    • 2000
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic nonlinear analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The complete finite element(FE) model generated, and a stress analysis is performed. In this system, burden to analysts fur introducing 3D cracks to the FE model as well as fur estimating their fracture mechanics parameters can be dramatically reduced. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

  • PDF

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Synthesis and Characterization of (THF)3 Li(NC)CU(C6H3-2,6-Mes2)and Br(THF)2 Mg(C6H3-2,6-Trip2) (Mes = C6H2-2,4,6-Me3; Trip = C6H2-2,4,6-i-Pr3): The Structures of a Monomeric Lower-Order Lithi

  • Hwang, Cheong-Soo;Power, Philip P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.605-609
    • /
    • 2003
  • The lower-order lithium organocyanocuprate compound, (THF)₃Li(NC)Cu($C_6$H₃-2,6-Mes₂) (1), and the bulky terphenyl Grignard reagent, Br(THF)₂Mg($C_6$H₃-2,6-Trip₂) (2), have been synthesized and structurally characterized both in the solid state by single crystal x-ray crystallography and in solution by multi-nuclear NMR and IR spectroscopy. The compound (1) was isolated as a monomeric contact ion-pair in which the C (organic ipso)-Cu-CN-Li atoms are coordinated linearly. The lithium has a tetrahedral geometry as a result of solvation by three THF molecules. The compound (1) is the first example of fully characterized monomeric lower order lithium organocyanocuprate. The bulky Grignard reagent (2) was also isolated as a monomer in which the magnesium, solvated by two THF molecules, has a distorted tetrahedral geometry. The crystals of (1) possess triclinic symmetry with the space group $P{\={1}}$, Z = 2, with a = 12.456(3) Å, b = 12.508(3) Å, c = 13.904(3) Å, α = 99.81°, β = 103.72(3)°, and γ = 119.44(3)°. The crystals (2) have a monoclinic symmetry of space group $P2_{1/C}$, Z = 4, with a = 13.071(3) Å, b = 14.967(3) Å, c = 22.070(4) Å, and β = 98.95(3)°.

Unsteady Conjugate Heat Transfer Analysis of a Cooled Turbine Nozzle with High Free Stream Turbulence

  • Seo, Doyoung;Hwang, Sunwoo;Son, Changmin;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.279-289
    • /
    • 2017
  • In this study, a series of conjugate heat transfer (CHT) analyses are conducted for a stage of a fully cooled high-pressure turbine (HPT) at elevated levels of free stream turbulence (Tu = 5% and 25.7%). The goal of the analyses is to investigate the influence of high turbulence intensity on the fluid-thermal characteristics of a nozzle guide vane (NGV). The turbine inlet temperature is defined by considering a typical radial temperature distribution factor (RTDF). The Unsteady Reynolds Average Navier-Stokes (URANS) CHT simulations are carried out using CFX 15.0, a commercial CFD package. The presented CFD modeling approach for high turbulence intensity is verified with the experimental data from two types of NASA C3X NGVs with films. The computation grid is generated for both the fluid and solid domains. The fluid domain grid is created using a tetrahedral grid system with prism layers because of its complex geometry, and the solid domain grid is composed of only tetrahedral elements. The analytical results are compared to understand the effect of turbulence on flow characteristics and metal temperature distributions. The results obtained in this study provide useful insights on the effects of high free stream turbulence and unsteadiness. The results also lead to the proposal of meaningful turbine design guidelines.

Sensitivity analysis for finite element modeling of humeral bone and cartilage

  • Bola, Ana M.;Ramos, A.;Simoes, J.A
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.71-84
    • /
    • 2016
  • The finite element method is wide used in simulation in the biomechanical structures, but a lack of studies concerning finite element mesh quality in biomechanics is a reality. The present study intends to analyze the importance of the mesh quality in the finite element model results from humeral structure. A sensitivity analysis of finite element models (FEM) is presented for the humeral bone and cartilage structures. The geometry of bone and cartilage was acquired from CT scan and geometry reconstructed. The study includes 54 models from same bone geometry, with different mesh densities, constructed with tetrahedral linear elements. A finite element simulation representing the glenohumeral-joint reaction force applied on the humerus during $90^{\circ}$ abduction, with external load as the critical condition. Results from the finite element models suggest a mesh with 1.5 mm, 0.8 mm and 0.6 mm as suitable mesh sizes for cortical bone, trabecular bone and humeral cartilage, respectively. Relatively to the higher minimum principal strains are located at the proximal humerus diaphysis, and its highest value is found at the trabecular bone neck. The present study indicates the minimum mesh size in the finite element analyses in humeral structure. The cortical and trabecular bone, as well as cartilage, may not be correctly represented by meshes of the same size. The strain results presented the critical regions during the $90^{\circ}$ abduction.

Automation of Analysis for Stress Intensity Factor of 3-D Cracks (3차원 균열의 응력확대계수에 대한 해석의 자동화)

  • 이준성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.496-500
    • /
    • 1997
  • This paper describes an automated system for analyzing the stress intensity factors(SIFs) of three-dimensional (3D) cracks. A geometry model, i.e.a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delauuay triangulation techniques. The singular elements such that the mid-point nodes near crack fornt are shifted at the quarter-points are automatically placed along the 3D crack front. THe complete finite element (FE) model generated, i.e the mesh with material properties and boundary conditions is given to one of the commercial FE codes, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performance of the present system, a semi- elliptical surface crack in a plate subjected to tension is solved.

  • PDF