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Automation of Analysis for Stress Intensity Factor of 3-D Cracks

ol &4 (d2ich 3tH)
Joon-Seong Lee (Kyonggi Univ)

ABSTRACT

This paper describes an automated system for analyzing the stress intensity factors(SIFs) of three-dimensional

(3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks 1s defined. Several distributions

of local node density are chosen, and then automatically superposed on one another over the geometry model by

using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic

tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that

the mid-point nodes near crack front are shifted at the quarter-points are automatically placed along the 3D crack

front. The complete finite element (FE) model generated, i.e. the mesh with material properties and boundary

conditions is given to one of the commercial FE codes, and a stress analysis is performed. The SIFs are calculated

using the displacement extrapolation method. To demonstrate practical performance of the present system, a semi-

elliptical surface crack in a plate subjected to uniform tension is solved.
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1. Introduction

3D cracks such as surface or embedded cracks are
more common flaws being found in practical struc-
tures. Analyses of the 3D cracks are desirable in struc-
tural integrity studies of practical structures. The
SIFs for an elliptical or a semi-elliptical crack have
been obtained by the finite element method (FEM)[1-
5]. However, there are still some problems to be
solved. The main concern for the FEM is a relatively
higher computation cost, especially when dealing with
3D crack problems. It should be also noted here that
the data preparation for 3D crack analyses require
special element arrangement near the crack front, and
that much efforts are necessary to generate such spe-
cial meshes. Dramatic progress in computer technol-
ogy now shortens computation time. However in real-
ity, labour intensive tasks to prepare a FE model of a
structural component with 3D cracks are still a bottle
neck. The author has proposed an automatic FE mesh
generation method for 3D structures consisting free-

form surfaces[6]. In the present study, by integrating
this mesh generator, one of commercial FE analysis
codes and some additional techniques to calculate the
SIF, a new automated system for analyzing the SIFs of
3D cracks was developed.

To examine accuracy and efficiency of the present
system, the SIF for a semi-elliptical surface crack in a
plate subjected to uniform tension is calculated and
compared with Raju-Newman's solutions[5,7].

2. Outline of the System
2.1 Definition of Geometry Model

A whole analysis domain is defined using one of
commercial geometry modelers, Designbase[8] which
has abundant libraries which enable us to easily oper-
ate, modify and apply to a solid model. Any informa-
tion related to a geometry model can be easily re-
trieved by the libraries of Designbase
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2.2 Attachment of Material Properties and Bound
ary Conditions to Geometry Model

Material properties and boundary conditions are di-
rectly attached onto the geometry model by clicking
the loops or edges that are parts of the geometric
model using a mouse, and then by inputting values.
The present system deals with displacement as well as
force boundary conditions.

2.3 Designation of Node Density Distributions

A node density distribution over a whole geometry
model is constructed as follows. The present system
stores several local node patterns such as the pattern
suitable to well capture stress concentration, the pat-
tern to subdivide a finite and whole domain uni-
formly. A user selects some of those local node pat-
terns and designates where to locate them. Then a glo-
bal distribution of node density over the whole analy-
sis domain is automatically calculated through their
superposition using the fuzzy knowledge processing
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2.4 Node and Element Generation

Node generation is one of time consuming processes
in automatic mesh generation. In the present study,
the bucketing method[10] is adopted to generate
nodes which satisfy the distribution of node density
over a whole analysis domain.

The Delaunay triangulation method[11] 1s used to
generate tetrahedral elements from numerous nodes
produced within a geometry. When the Delaunay tri-
angulation method is utilized to generate elements in a
geometry with cracks, mis-match elements across sur-
face crack front tend to occur as shown in Fig. 1(a).
To avoid the mis-match elements, node densities on
the crack front are automatically controlled to be
slightly higher than those near the crack as shown in
Fig. 1(b).

2.5 Automatic Attachment of Material Properties
and Boundary Condiions to FE Mesh

Through the interactive operations mentioned in sec-
tion 2.2, a user designates material properties and
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boundary conditions onto the geometry model. Then
these are automatically attached on nodes, edges,
faces and volume of elements. Such automatic conver-
sion can be performed owing to the special data struc-
ture of FEs such that each part of element knows
which geometry part it belongs to. Finally, a complete
FE model consisting of mesh, material properties and
boundary conditions is obtained. The current version
of the system produces FEs compatible to quadratic
tetrahedral elements implemented 1n one of the com-
mercial FE codes, MARC.

Afront

rackyfront

(b)

Fig. 1 Technique of avoiding mis-match elements
3. Calculation of SIF
3.1 Singular Element

When ordinary quadratic tetrahedral elements are
employed to calculate the SIF, a very fine mesh is re-
quired near crack front to capture J/t variation in dis-
placements and 1/t variation in stresses where r de-
notes the distance from crack front. To relax this situ-
ation, singular elements as shown in Fig. 2 are
adopted{12]. In the singular element, the mid-point
nodes near a crack front are shifted to the quarter-
points. This conversion of ordinary tetrahedral ele-
ments along a front of 3D crack to the singular ele-
ments is automatically performed in the last stage of



the creation of a FE model.

crack front

Fig. 2 Conversion of ordinary quadratic tetrahedral
elements along crack front into singular

elements
3.2 Calculation of SIFs
SIFs are computed using the displacement extrapola-

tion method[2].
along the crack face are substituted in the following

Nodal displacements calculated

crack tip displacement equation :

i— (for plane strain)
= —J2 7 lim ? 1-V? p
=0 E (for plane stress)

()

where w is a nodal displacement, and E' is equal to E

in the plane stress condition or E/(1-V*) in the plane
strain condition. Only positions of free surface inter-
section are regarded as in the plane stress condition,
while other positions are in the plane strain condition.
Although there is no clear boundary between the plane
strain region and the plane stress region, the point on
the free surface, i.e. $=0, is in plane stress. Radial
lines for the semi-elliptical surface crack front and
those of the semi-circular one are defined as in Fig. 3.

For each radial line with an elliptic angle , the nodal
displacements resulting from an FE calculation are in-
serted in the well-known equation (1) for the displace-
ments near the crack tip. By this means, SIF values K
for each radial line may be computed from the dis-
placements of the nodes at distance r from the crack
face. The first segment of the K curve where K de-

pends linearly on r is extrapolated to r = 0. The inter-
section with the K-axis yields the desired value for the
SIF. The procedure is rather tedious and a distinct lin-
ear segment cannot be recognized in every load case.
Therefore, the least square method is applied to evalu-
ate the SIF. In this least square operation, the K value
evaluated at the shifted quarter point is neglected.
This displacement extrapolation method is popularly
used to calculate the SIF. In the present study, this
process is fully automated. When a crack is desig-
nated by a user in the definition process of a geometry
model, radial lines for the crack front are automati-
cally determined. After the stress analysis using
MARC, displacement distributions are interpolated
along the radial lines, on each of which the SIF is cal-
culated by the least square method.

y

X
(a) Half semi - circular surface crack(a = c)

y

(b) Half semi - elliptical surface crack

Fig. 3 Definition of radial lines to calculate the stress
intensity factors

4. Result and Discussion
In order to examine efficiency and accuracy of the

present system, a surface cracked plate of width 2b,
thickness t and height 2h subjected to uniform tension

— 498 -



as shown in Fig. 4 was analyzed. A semi-elliptical
surface crack is assumed here.

Section A - A

Fig. 4 A plate with a semi-elliptical surface crack

Fig. 5 shows a typical FE mesh of a quarter portion of
a plate with a semi-elliptical surface crack generated
by the present system. The mesh consists of 2,982
quadratic tetrahedral elements and 5,842 nodes.
Nodes and elements are generated in about 90 seconds
and in about 25 seconds, respectively. This is mea-
sured on a popular engineering workstation (EWS),
SUN SparcStation 10. To complete this mesh, the fol-
lowing three node patterns are utilized ; (a) the base
node pattern in which nodes are generated with uni-
form spacing over a whole analysis domain, (b) a spe-
cial node pattern for the semi-elliptical surface crack,
and (c) a special node pattern in which node density is
getting coarser departing from the bottom face includ-
ing the surface crack and the ligament section.

The analyses were performed for three aspect ratios
of a/c =0.4,0.6 and 1.0, and two crack depths of a/t =
0.2 and 0.4. Young’s modulus E and Poisson’s ratio
were assumed to be 205,800MPa and 0.3, respec-
tively. For example, Fig. 6 shows the comparison be-
tween the present solutions and Newman-Raju’s solu-
tions{5,7] for single crack configuration (a/c=0.6, a/
t=0.4).

It can be seen from the figures that the present re-
sults using the singular elements agree well with
Raju-Newman’s solutions within 2 to 3% difference.

Fig. 7 shows the measured processing time of a
whole process plotted against the total number of
nodes. These are also measured on a popular engineer-
ing workstation, SUN SparcStation 10. Among a

whole process, the interactive operations to be done
by a user, i.e. the definition of a geometry model, the
designation of local node patterns and the assignment
of material properties and boundary conditions are
performed in about 2 minutes. The other processes are
fully automatically performed.
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Fig. 5 A typical mesh of a quarter portion
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Fig. 6 Comparison of present SIF with Raju-Newman
solutions

—499—



[0 Definition of geometry model
[3 Attachment of material properties and boundary conditions &
Designation of node density distributions to geometry model
B Generation of nodes & elements
Attachment of material properties and
boundary conditions to mesh
800 - B Finite clement stress analysis
M Calculation of stress intensity factor
8 -4
o
g
g Fully
‘E - automatic
operations
| Interactive
o operations

L) 1 ¥ T
1,996 3,637 4,489 5842
Number of nodes

Fig. 7 Processing time vs. number of nodes
5. Conclusion

A new automated system for analyzing the SIFs of
3D cracks was developed in the present study. The au-
tomatic FE mesh generation technique based on the
fuzzy knowledge processing and the computational
geometry techniques were integrated in the system,
together with one of commercial FE programs. Here
interactive operations to be done by a user can be per-
formed in a few minutes even for complicated prob-
lems. The other processes are fully automated being
able to be performed in several minutes in a popular
engineering workstation environment. It can be seen
that the results using the present system agree well

with Raju-Newman's solutions.
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