DOI QR코드

DOI QR Code

Synthesis and Characterization of (THF)3 Li(NC)CU(C6H3-2,6-Mes2)and Br(THF)2 Mg(C6H3-2,6-Trip2) (Mes = C6H2-2,4,6-Me3; Trip = C6H2-2,4,6-i-Pr3): The Structures of a Monomeric Lower-Order Lithi

  • Hwang, Cheong-Soo (Department of Chemistry, Dankook University) ;
  • Power, Philip P. (Department of Chemistry, University of California)
  • Published : 2003.05.20

Abstract

The lower-order lithium organocyanocuprate compound, (THF)₃Li(NC)Cu($C_6$H₃-2,6-Mes₂) (1), and the bulky terphenyl Grignard reagent, Br(THF)₂Mg($C_6$H₃-2,6-Trip₂) (2), have been synthesized and structurally characterized both in the solid state by single crystal x-ray crystallography and in solution by multi-nuclear NMR and IR spectroscopy. The compound (1) was isolated as a monomeric contact ion-pair in which the C (organic ipso)-Cu-CN-Li atoms are coordinated linearly. The lithium has a tetrahedral geometry as a result of solvation by three THF molecules. The compound (1) is the first example of fully characterized monomeric lower order lithium organocyanocuprate. The bulky Grignard reagent (2) was also isolated as a monomer in which the magnesium, solvated by two THF molecules, has a distorted tetrahedral geometry. The crystals of (1) possess triclinic symmetry with the space group $P{\={1}}$, Z = 2, with a = 12.456(3) Å, b = 12.508(3) Å, c = 13.904(3) Å, α = 99.81°, β = 103.72(3)°, and γ = 119.44(3)°. The crystals (2) have a monoclinic symmetry of space group $P2_{1/C}$, Z = 4, with a = 13.071(3) Å, b = 14.967(3) Å, c = 22.070(4) Å, and β = 98.95(3)°.

Keywords

References

  1. Noltes, J. G.; van Koten, G. In Comprehensive Organometallic Chemistry; Pergamon: Oxford, 1982; Vol. 2, Chapter 14, p 709.
  2. van Koten, G.; James, S. L.; Jastrzebski, J. T. B. H. In Comprehensive Organometallic Chemistry II; Elsevier: Amsterdam, 1995; Vol. 3, Chapter 2, p 57
  3. Lindsell, W. E. In Comprehensive Organometallic Chemistry; Pergamon: Oxford, 1981; Vol. 1, Chapter 4.
  4. Bransma, L.; Verkruijsse, H. Preparative Polar Organometallic Chemistry; Trost, B. M., Ed.; Springer-Verlag: New York, 1986; Vol 1.
  5. Corey, E. J.; Posner, G. H. J. Am. Chem. Soc. 1967, 89, 3911.
  6. House, H. O.; Umen M. J. J. Org. Chem. 1973, 38, 3893. https://doi.org/10.1021/jo00962a016
  7. Gorlier, J.-P.; Hamon, L.; Levisalles, J.; Wagon, J. J. Chem. Soc., Chem. Commun. 1973, 88.
  8. Corey, E. J.; Beames, D. J. J. Am. Chem. Soc. 1972, 94, 7210. https://doi.org/10.1021/ja00775a089
  9. Lipshutz, B. H.; Wilhelm, R. S.; Floyd, D. M. J. Am. Chem. Soc.1981, 103, 7672. https://doi.org/10.1021/ja00415a055
  10. Lipshutz, B. H.; Wilhelm, R. S.; Kozlowsky, J. A. Tetrahedron1984, 40, 5005 https://doi.org/10.1016/S0040-4020(01)91251-7
  11. Bertz, S. H.; Fairchild, E. H. In Reagents for Organic Synthesis; Paquette, L., Ed.; Wiley: New York, 1995; p 1341
  12. Lipshutz, B. H.; Kozolowski, J. A.; Wilhelm, R. S. J. Org. Chem.1984, 49, 3943. https://doi.org/10.1021/jo00195a011
  13. Bertz, S. H. J. Am. Chem. Soc. 1990, 12, 4031
  14. Lipshutz, B. H.; Sharma, S.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 12, 4032.
  15. Stemmler, T. J.; Penner-Hahn, J. E.; Knochel, P. J. Am. Chem.Soc. 1993, 115, 348. https://doi.org/10.1021/ja00054a052
  16. Barnhart, T. M.; Huang, H.; Penner-Hahn, J. E. J. Org. Chem. 1995, 60, 4310. https://doi.org/10.1021/jo00119a001
  17. Huang, H.; Alvarez, K.; Lue, Q.; Barnhart, T. M.; Snyder, J. P.;Penner-Hahn, J. E. J. Am. Chem. Soc. 1996, 118, 8808. https://doi.org/10.1021/ja961862w
  18. Stemmler, T. J.; Barnhart, T. M.; Penner-Hahn, J. E.; Tucker, C.E.; Knochel, P.; Bohme, G.; Frenking, G. J. Am. Chem. Soc. 1995,117, 12489. https://doi.org/10.1021/ja00155a013
  19. Snyder, J. P.; Spangler, D. P.; Behling, J. R.; Rossiter, B. J. Org.Chem. 1994, 59, 2665. https://doi.org/10.1021/jo00089a001
  20. Snyder, J. P.; Bertz, S. H. J. Org. Chem. 1995, 60, 4312. https://doi.org/10.1021/jo00119a002
  21. Boche, G.; Bosold, F.; Marsch, M.; Harms, K. Angew. Chem.1998, 110, 1779. https://doi.org/10.1002/(SICI)1521-3757(19980619)110:12<1779::AID-ANGE1779>3.0.CO;2-8
  22. Boche, G.; Bosold, F.; Marsch, M.; Harms, K. Angew. Chem., Int. Ed. 1998, 37, 1684. https://doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1684::AID-ANIE1684>3.0.CO;2-2
  23. Kronenberg, C. M. P.; Jastrzebski, J. T. B. H.; Spek, A. L.; vanKoten, G. J. Am. Chem. Soc. 1998, 120, 9688. https://doi.org/10.1021/ja9802448
  24. Hwang, C.-S.; Power, P. P. J. Am. Chem. Soc. 1998, 120, 6409. https://doi.org/10.1021/ja9809399
  25. Eaborn, C.; Hill, M. S.; Hitchcock, P. B.; Smith, J. D.Organometallics 2000, 19, 5780. https://doi.org/10.1021/om000748q
  26. Lingnau, R.; Strähle, J. Angew. Chem., Int. Ed. Engl. 1988, 27, 436. https://doi.org/10.1002/anie.198804361
  27. Haaland, A.; Rypdal, K.; Verne, H. P.; Scherer, W.; Thiel, W. R.Angew. Chem., Int. Ed. Engl. 1994, 33, 2443. https://doi.org/10.1002/anie.199424431
  28. Hwang, C.-S.; Power, P. P. J. Organomet. Chem. 1999, 589, 234. https://doi.org/10.1016/S0022-328X(99)00412-X
  29. He, X.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1992,114, 9668. https://doi.org/10.1021/ja00050a062
  30. Haubrich, S. T.; Power, P. P. J. Am. Chem. Soc. 1998, 120, 2202. https://doi.org/10.1021/ja973479c
  31. Ruhlandt-Senge, K.; Ellison, J. J.; Wehmschulte, R. J.; Pauer, F.;Power, P. P. J. Am. Chem. Soc. 1993, 115, 11353. https://doi.org/10.1021/ja00077a038
  32. Schiemenz, B.; Power, P. P. Organometallics 1996, 15, 958. https://doi.org/10.1021/om950588w
  33. Hope, H. A. Practicum in Synthesisand Characterization in Experimental Organometallic Chemistry;Wayda, A. L., Darensbourg, M. Y., Eds.; ACS symposium Series357; American Chemical Society: Washington D. C., 1987;Chapter 10.
  34. SHELXTL, A Program for Crystal Structure Determinations, v.5.03; Siemens Analytical Instrument: Madison, WI, 1994.
  35. Parkin, S. R.; Moezzi, B.; Hope, H. J. Appl. Cryst. 1995, 28, 53. https://doi.org/10.1107/S0021889894009428
  36. Hwang, C.-S.; Power, P. P. Organometallics 1999, 18, 697. https://doi.org/10.1021/om980840a
  37. Setzer, W.; Schleyer, P. V. R. Adv. Organomet. Chem. 1985, 24,353. https://doi.org/10.1016/S0065-3055(08)60418-9
  38. Pauer, F.; Power, P. P. In Lithium Chemistry- A Theoreticaland Experimental Overview; Sapse, A.-M., Schleyer, P. V. R.,Eds.; Wiley: New York, 1985; Chapter 9, p 295.
  39. Krause, N. Angew. Chem., Int. Ed. Engl. 1999, 38, 79. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<79::AID-ANIE79>3.0.CO;2-T
  40. Bertz, S. H. J. Am. Chem. Soc. 1991, 113, 5470. https://doi.org/10.1021/ja00014a058
  41. Rieke, R. D.; Li, P. T.; Burns, T. P.; Uhm, S. T. J. Org. Chem.1981, 46, 4323. https://doi.org/10.1021/jo00334a056
  42. Silverman, G. S.; Rakita, P. E. Handbook of Grignard Reagents;Marcel Dekker, Inc.: 1996; Chapter 1.
  43. Kohler, E. P.; Blanchard, L. W. J. Am. Chem. Soc. 1935, 57, 367. https://doi.org/10.1021/ja01305a043
  44. Ellison, J. J.; Power, P. P. J. Organomet. Chem. 1996, 526, 263. https://doi.org/10.1016/S0022-328X(96)06560-6
  45. Cotton, F. A.; Wilkinson, G. In Advanced Inorganic Chemistry, 5th Ed.; John Wiley & Sons: 1988; Chapters 4 and 5.

Cited by

  1. Mechanisms of Nucleophilic Organocopper(I) Reactions vol.112, pp.4, 2012, https://doi.org/10.1021/cr200241f
  2. Modern 1,3,2-Diazaborole Chemistry - A Metamorphosis from Electrophilic to Nucleophilic Boron vol.2012, pp.34, 2012, https://doi.org/10.1002/ejic.201200812
  3. Compounds. A Personal View vol.31, pp.22, 2012, https://doi.org/10.1021/om300830n
  4. New avenues in the directed deprotometallation of aromatics: recent advances in directed cupration vol.43, pp.38, 2014, https://doi.org/10.1039/C4DT01130A
  5. Ph], a Potassium Silylcyanocuprate as a Catalyst Model for Silylation Reactions with Silylboranes: Syntheses, Structures, and Catalytic Properties vol.56, pp.11, 2017, https://doi.org/10.1021/acs.inorgchem.7b00749
  6. -terphenyl dithiocarboxylate ligand pp.1477-9234, 2017, https://doi.org/10.1039/C7DT04073C
  7. Synthesis and structural characterization of two donor-functionalized terphenyl magnesium compounds vol.363, pp.10, 2003, https://doi.org/10.1016/j.ica.2010.03.002
  8. Borylcyanocuprate in a One‐Pot Carboboration by a Sequential Reaction with an Electron‐Deficient Alkyne and an Organic Carbon Electrophile vol.123, pp.4, 2003, https://doi.org/10.1002/ange.201005667
  9. Borylcyanocuprate in a One‐Pot Carboboration by a Sequential Reaction with an Electron‐Deficient Alkyne and an Organic Carbon Electrophile vol.50, pp.4, 2003, https://doi.org/10.1002/anie.201005667
  10. Creation of Nucleophilic Boryl Anions and Their Properties vol.84, pp.10, 2003, https://doi.org/10.1246/bcsj.20110123
  11. Evolution of a Unified Strategy for Complex Sesterterpenoids: Progress toward Astellatol and the Total Synthesis of (−)‐Nitidasin vol.21, pp.39, 2003, https://doi.org/10.1002/chem.201501423
  12. Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions vol.60, pp.14, 2003, https://doi.org/10.1021/acs.inorgchem.0c03623