• Title/Summary/Keyword: Tetragonal ZrO2

Search Result 224, Processing Time 0.029 seconds

Mechanical Properties of (Y, Nb)-TZP/Alumina Composites for Dental Implant Abutments (치과 임플란트 상부구조물용 (Y, Nb)-TZP/알루미나 복합체의 기계적 물성)

  • 정형호;김대준;한중석;이득용
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.508-512
    • /
    • 2004
  • For abutment of dental implants, (Y, Nb)-TZP/Alumina composites were prepared by addition of 10-90 vol% alumina at an interval of 10 vol% into tetragonal zirconia solid solution which consists of 90.24 mol% Zr $O_2$, 5.31 mol% Y$_2$ $O_3$, and 4.45 mol% Nb$_2$O$\_$5/. Biaxial flexure strength and fracture toughness of composite were optimized by adding 10 vol% alumina, which resulted in 900 MPa and 8.9 MPam$\^$1/2/, respectively. The composite did not undergo low temperature degradation even after autoclave treatment at 200$^{\circ}C$ for 10 h. 65 of (Y, Nb)-TZP/Alumina composite abutments were employed into 40 patients and any adverse reaction, screw loosing, or fracture of abutments was not observed for the span of 2 years, indicating that the ceramic abutments can be safely used for restorations.

Effects of Aging on Properties of MgO-Partially Stabilized Zirconia (마그네시아 부분안정화 지르코니아 소결체의 특성에 미치는 열처리 효과)

  • 정형진;오영제;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.243-250
    • /
    • 1987
  • The effects aging on some properties and thermal-shock behavior of zirconia partially stabilized with 9 mol% MgO (9MZ) were studied. 9MZ specimens were aged over $1200^{\circ}$-$1400^{\circ}C$ for 12hours subsequently, after sintering at $1650^{\circ}C$ for 4 hours. Fracture strength(both before and after thermal-shock test), linear thermal expansion, monoclinic fraction and phase transition by XRD, density, galvanic potential and microstructure were measured. Quantitative chemical analysis around the grain-boundary of the specimen aged at $1350^{\circ}C$ was also conducted by EDX. The aging of 9MZ specimen causes a thermal decomposition of cubic-$ZrO^{2}$ into the formation metastable tetragonal-$ZrO^{2}$ and MgO. The former increases the residual strength after thermal-shock test and the latter improves the thermal-shock resistance due to thermal conduction through the continuous magnesia phase and the formation of monoclinic phase content in matrix were increased with decreasing the aging temperature from $1400^{\circ}C$ to $1200^{\circ}C$. Galvanic potential of the aged specimen exhibited a proper emf characteristic.

  • PDF

The Dielectric Properties of PZT(52/48)/BST(60/40) Heterolayered Thin Film Prepared bv RF Sputtering Method (RF 스퍼터링법을 이용한 PZT(52/48)/BST(60/40) 이종층 박막의 유전 특성)

  • Kwon, Hyun-Yul;Kim, Ji-Heon;Choi, Eui-Sun;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1621-1623
    • /
    • 2004
  • The $Pb(Zr_{0.52}Ti_{0.48})O_3/(Ba_{0.6}Sr_{0.4})TiO_3$ [PZT(52/48)/BST(60/40)] heterolayered thin films were deposited on Pt/Ti/$SiO_2$/Si substrates by using the RF sputtering method with RF powers of 60,70,80,90[W]. All thin films showed the peaks of the tetragonal phase. Increasing the RF power, dielectric constant and loss of the PZT(52/48)/BST(60/40)] heterolayered thin films were decreased. The thickness ratio of PZT and BST thin films was 1/1. The relative dielectric constant and the dielectric loss of the PZT(52/48)/ BST(60/40) heterolayered thin films were 562 and 13%, respectively.

  • PDF

Fabrication of functionally graded materials of hydroxyapatite and zirconia (수산화아파타이트와 지르코니아의 경사기능 재료의 제조)

  • 김성진;조경식;박노진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.115-119
    • /
    • 2001
  • Hydroxyapatite-yttria stabilized zirconia bioceramics containing fine zirconia particles were prepared as 3-layered functionally graded materials (FGMs) using a spark plasma sintering (SPS) and hot pressing (HP) apparatuses. The pretreatment of the raw hydroxyapatite promoted the sinterability of hydroxyapatite. The maximum density of pretreated FGM composites could be obtained at lower temperature than that for he untreated FGM samples. No decomposition from hydroxyapatite to three calcium phosphate (TCP) was observed in FGMs of HAp-$ZrO_2$ sintered below $1200^{\circ}C$ for 8 min under 10 MPa by SPS. However, the transformation of the tetragonal zirconia to the cubic modification had occurred in FGMs at this temperature. The presence of zirconia i.e. stress induced transformation of zirconia may be expected to enhance the mechanical properties of HAp-$ZrO_2$ FGM. The SPS is concluded as a better method to fabricated the FGM with dense and high strength compared with HP process.

  • PDF

Mn-Modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3] Single Crystals for High Power Piezoelectric Transducers

  • Oh, Hyun-Taek;Lee, Jong-Yeb;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.150-157
    • /
    • 2017
  • Three types of piezoelectric single crystals [PMN-PT (Generation I $[Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3]$), PMN-PZT (Generation II $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$), PMN-PZT-Mn (Generation III)] were grown by the solid-state single crystal growth (SSCG) method, and their dielectric and piezoelectric properties were measured and compared. Compared to (001) PMN-PT and PMN-PZT single crystals, the (001) PMN-PZT-Mn single crystals exhibited a higher transition temperature between the rhombohedral and tetragonal phases ($T_{RT}=144^{\circ}C$), as well as a higher coercive electric field ($E_C=6.3kV/cm$) and internal bias field ($E_I=1.6kV/cm$). The (011) PMN-PZT-Mn single crystals showed the highest coercive electric field ($E_C=7.0kV/cm$), and the highest stability of $E_C$ and $E_I$ during 60 cycles of polarization measurement. These results demonstrate that both Mn doping (for higher electromechanical quality factor ($Q_m$)) and a (011) crystallographic orientation (for higher coercive electric field and stability) are necessary for high power transducer applications of these piezoelectric single crystals. Specifically, the (011) PMN-PZT-Mn single crystal (Gen. III) had the highest potential for application in the fields of SONAR transducers, high intensity focused ultrasound (HIFU), ultrasonic motors, and others.

Temperature Stability of Electro-mechanical Coupling Factors of PZT Ceramics (PZT 세라믹스의 전기기계결합계수 온도 안정성에 관한 연구)

  • Lee, Gae-Myoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • In this paper, PZT piezoelectric ceramic specimens with 4 compositions (Zr/Ti=50/50, 53/47, 56/44, 58/42) in $Pb(Zr,Ti)O_3$ system were fabricated. We studied effects of poling strength and thermal aging on the temperature characteristics of eletromechanical coupling factor k31 of the specimens, which were poled with the DC electric fields, 1.5, 2.5 and 3.5 kV/mm respectively and thermally aged for an hour at $200^{\circ}C$. The eletromechanical coupling factor k31 of the specimen with the composition Zr/Ti= 53/47, nearest to the morphotropic phase boundary decreased the most greatly, irrelevant to the intensity of poling field, due to 1st thermal aging. And the temperature coefficient of eletromechanical coupling factor k31 was (-) in the tetragonal phase composition and (+) in the rhombohedral phase composition, which is reverse in the temperature coefficient of resonance frequency. It is interesting that eletromechanical coupling factor k31 of PZT ceramics is shown to be able to increase as temperature increase in the interval $-20{\sim}80^{\circ}C$.

Facile Synthesis of SrWO4:Eu3+ Phosphors

  • Bharat, L. Krishna;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.643-643
    • /
    • 2013
  • Recently, synthesis of low-dimensional nanostructures is gaining more importance due to their structural properties and growing potential applications. On the other hand, luminescent materials doped with rare earth ions have drawn immense attention. The commercial phosphors are based on many host materials. Among them, tungstates are being currently investigated by many research groups owing to a wide range of applications. Tungstates are formed by different metal cations (e.g., SrWO4, Na2WO4, NiWO4, Cr2WO6, and ZrW2O8) and their structure depends on the size of the metal cation. Tungstates with large bivalent cations (${\gg}0.1\;nm$) have the scheelite structure and the wolframite structure with smaller ions (<0.1 nm). Strontium tungstate has the scheelite structure which is tetragonal with space group I41/a. The luminescent properties of the tungstate have been extensively explored in application fields such as sensors, detectors, lasers, photoluminiscent devices, photo catalysts, etc. In this work, we synthesized SrWO4 phosphors with different Eu3+ concentrations by using a facile route. The morphology was analyzed by using a field-emission scanning electron microscope, which exhibits the spherical shape. Transmission electron microscope image revealed the spheres composed of nanoparticles. X-ray diffraction patterns confirmed their tetragonal shape. The photoluminescence excitation and emission spectra were analyzed by varying the Eu3+ concentration, which shows a dominant red emission.

  • PDF

Preparation and Sintering Behavior of Monodispersed Alumina-Zirconia Fine Powders (단분산 $Al_2O_3-ZrO_2$ 복합분말의 합성과 소결특성)

  • 부재필;송용원;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1209-1217
    • /
    • 1994
  • Monodispersed alumina-zirconia fine powders were prepared by controlled hydrolysis of alkoxides. These powders and the sintered bodies were characterized. Aluminium alkoxide and zirconium alkoxide were dissolved into complex solvent with butanol and n-propanol, and by acetonitrile added hydrolytic solution, hydrolysis rate was controlled. The oil, as a dispersant, was added in hydrolytic solution, and then prepared powders were nano-sized and well-monodispersed. In the case of hydroxypropyl celluose (HPC) as a dispersant, it was added in complex solution with butanol and iso-propanol, sub-micrometer sized and well-monodispersed powders could be prepared. The value of relative density (R.D.) and tetragonal phase fraction of zirconia in the sintered body made by nano-meter sized powders were respectively higher than those in the case of sub-micrometer sized one.

  • PDF

Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering (Hydroxyapatite 분위기 소결을 통한 지르코니아 표면 경도 강화)

  • Choi, Min-Geun;Lim, Ji-Ho;Kong, Kyu-Hwan;Jeong, Dae-Yong;Lee, Wonjoo;Li, Long-Hao;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.677-681
    • /
    • 2014
  • To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% $Y_2O_3$ doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature ($1400^{\circ}C$), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.

Piezoelectric property of PZT ceramics by DC field and corona discharge poling (직류전계 및 corona방전에 따른 PZT 세라믹스의 분극과 압전특성)

  • Park, In-Cheol;Im, Jin-Ho;Lee, Jun-Hyeong;Jo, Sang-Hui
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.178-183
    • /
    • 1995
  • Piezoelectric properties of sintered specimen having a tetragonal phase of $Pb_{0.9888}Sr_{0.012}(Zr_{0.52}Ti_{0.48})O_{3}$ were comparatively studied with two different poling methodes, i.e., DC field and corona discharge technique. Internal stress of poled specimens by indentation fracture toughness was analyzed to evaluate degradation phenomenon. As the results, it was confirmed that corona discharge poling technique is practicable and has merits such as low-temperature poling, slow degradation and no electric breakdown comparing to DC field poling. However, corona discharge technique showed lower Kp value than DC field poling.

  • PDF