• Title/Summary/Keyword: Tetrachloroethylene

Search Result 86, Processing Time 0.024 seconds

The Characteristics of Tetrachloroethylene (PCE) Degradation by Pseudomonas putida BJ10 (Pseudomonas putida BJ10의 Tetrachloroethylene (PCE) 분해 특성)

  • Choi, Myung-Hoon;Kim, Jai-Soo;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • In this study, biological PCE degradation by using a BTEX degrading bacterium, named BJ10, under aerobic conditions in the presence of toluene was examined. According to morphological, physiological characteristics, 16S rDNA sequencing and fatty acid analysis, BJ10 was classified as Pseudomonas putida. As a result of biological PCE degradation at low PCE concentrations (5 mg/L), PCE removal efficiency by P. putida BJ10 was 52.8% for 10 days, and PCE removal rate was 5.9 nmol/hr (toluene concentration 50 mg/L, initial cell density 1.0 g (wet weight)/L, temperature 30, pH 7 and DO $3.0{\sim}4.2\;mg/L$. At high PCE concentration (100 mg/L), PCE removal efficiency by P. putida BJ10 was 20.3% for 10 days, and PCE removal rate was 46.0 nmol/hr under the same conditions. The effects of various toluene concentration (5, 25, 50, 100, 200 mg/L) on PCE degradation were examined under the same incubation conditions. The highest PCE removal efficiency of PCE was 57.0% in the initial PCE concentration of 10 mg/L in the presence of 200 mg/L toluene for 10 days. Furthermore, the additional injection of 5.5 mg/L PCE (total 7.6 mg/L) made 63.0% degradation for 8 days in the presence of 50 mg/L toluene under the same conditions. Its removal rate was 13.5 nmol/hr, which was better than the initial removal rate (8.1 nmol/hr).

A Study on Persulfate Oxidation to Remove Chlorinated Solvents (TCE/PCE) (과황산(persulfate) 산화반응을 이용한 염소계 화합물(TCE, PCE) 분해에 관한 연구)

  • Song, Kyoung-Ho;Do, Si-Hyun;Lee, Hong-Kyun;Jo, Young-Hoon;Kong, Sung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.549-556
    • /
    • 2009
  • In situ chemical oxidations (ISCO) are technologies for destruction of many contaminants in soil and groundwater, and persulfate has been recently studied as an alternative ISCO oxidant. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were chosen for target organic compounds. The objective of this study is to demonstrate the influence of initial pH (3, 6, 9, 12), oxidant concentrations (0.01, 0.05, 0.1, 0.3, 0.5 M), and contaminants concentrations (10, 30, 50, 70, 100 mg/L) on TCE/PCE degradation by persulfate oxidation. The maximum TCE/PCE degradation occurred at pH 3, and the removal efficiencies with this pH condition were 93.2 and 89.3%, respectively. The minimum TCE/PCE degradation occurred at pH 12, and the removal efficiencies were 55.0 and 31.2%, respectively. This indicated that degradation of TCE/PCE decreased with increasing the initial pH of solution. Degradation of TCE/PCE increased with increasing the concentration of persulfate and with decreasing the concentration of contaminants (TCE/PCE). The optimum conditions for TCE/PCE degradation were pH 3, 0.5 M of persulfate solution, and 10 mg/L of contaminant concentration. At these conditions, the first-order rate constants ($k_{obs}$) for TCE and PCE were 1.04 and 1.31 $h^{-1}$, respectively.

Degradation of Tetrachloroethylene (PCE) by a Dechlorinating Enrichment Culture Fixed in an Anaerobic Reactor (탈염소화 미생물 부착 혐기성 고정막 반응기에 의한 테트라클로로에틸렌(PCE)의 분해)

  • Lee Tae Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.49-55
    • /
    • 2004
  • A soil enrichment LYF-1 culture from a contaminated site, which could reductively dechlorinate 900 $\mu$M (ca. 150 mg/L) of tetrachloroethylene (PCE) stoichimetrically into cis-1,2-dichloroethylene (cis-DCE), was established and characterized. The enrichment culture can use yeast extract, peptone, formate, acetate, lactate, pyruvate, citrate, succinate, glucose, sucrose, and ethanol as electron donors for dechlorination of PCE. Addition of NO$_2$$^{[-10]}$ and NO$_3$$^{[-10]}$ as alternative electron acceptors showed complete inhibition of PCE dechlorination, but S$_2$O$_3$$^{-2}$ , SO$_3$$^{-2}$ and SO$_4$$^{-2}$ had no significant effect on PCE dechlorination. The enrichment culture was attached to ceramic media in an anaerobic fixed-bed reactor. The fixed-bed reactor showed more than 99% of PCE degradation in the range of PCE loading rate of 0.13-0.78 $\mu$moles/L/hr. The major end product of PCE dechlorination was cis-DCE.

Photocatalytic Degradation of Chlorinated Hydrocarbons in Water (물에함유된 염소계 유기화합물의 광촉매 분해반응)

  • 김경남;김동형;이태규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.31-40
    • /
    • 1995
  • The degradation of aqueous chlorinated compounds such as trichloroethylene (TCE), tetrachloroethylene (PCE) and dichloroacetic acid (DCA) to $CO_2$ and HCl was accomplished in the presence of UV light and suspended TiO$_2$ slurries. The decomposition of chlorinated hydrocarbons at 253.7 m irradiation was more effective than that at 360 nm irradiation. Our results show that 253.7 nm irradiation alone can be used for decomposing some chlorinated hydrocarbons such as PCE and TCE.

  • PDF

DNA Single Strand Breaks of Perchloroethylene and Its Bio-degradation Products by Single Cell Gel Electrophoresis Assay in Mammalian Cell System

  • Jeon, Hee-Kyoung;Kim, Young-Seok;Sarma, Sailendra Nlath;Kim, Youn-Jung;Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 2005
  • Perchloroethylene (tetrachloroethylene, PCE), a dry cleaning and degreasing solvent, can enter ground-water through accidental leak or spills. PCE can be degraded to trichloroethylene (TCE), 1, 1-dichloroethylene (DCE) and vinyl chloride (VC) as potential bio-product. These compounds have been reported that they can cause clinical diseases and cytotoxicity. However, only a little genotoxic information of these compounds has been known. In this study, we investigated DNA single strand breaks of PCE, TCE, DCE and VC by single cell gel electrophoresis assay, (comet assay) which is a sensitive, reliable and rapid method for DNA single strand breaks with mouse lymphoma L5178Y cells. From these results, $37.5\;{\mu}g/ml$ of PCE, $189\;{\mu}g/ml$ of TCE and $56.4\;{\mu}g/ml$ of DCE were revealed significant DNA damages in the absence of S-9 metabolic activation system meaning direct-acting mutagen. And in the presence of S-9 metabolic activation system, $41.5\;{\mu}g/ml$ of PCE, $328.7\;{\mu}g/ml$ of TCE and $949\;{\mu}g/ml$ of DCE were induced significant DNA damage. In the case of VC, it was revealed a significant DNA damage in the presence of S-9 metabolic activation system. Therefore, we suggest that chloroethylene compounds (PCE, TCE, DCE and VC) may be induced the DNA damage in a mammalian cell.

Protein Solubilization in Reverse Micelles of Cationic Surfactant (양이온 계면활성제 역미셀내로 단백질의 용해)

  • 김영숙;노영태
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.215-221
    • /
    • 1990
  • The solubilization of BSA, pepsin, trypsin and ribonuclease-a in cationic reverse micellar solutions has been investigated. For complete solubilization into reverse micellar solutions, pH values of several pH units above the isoelectric point of each protein were required. Solubilization was observed to decrease with increasing ionic strength of KCI. The size of empty micelles showed no significant change with increasing ionic strength. Trioctylmethyl ammonium chloride (TOMAC) in cyolohexane showed the lowest solubilization for the proteins. The system didodecyl dimethyl ammonium bromide (DDAB)-tetrachloroethylene was capable of solubilizing larger amounts of proteins than the system DDAB-benzene. Cetyl trimethyl ammonium bromide(CTAB)-hexanol-isooctane system showed lower solubilization than DDAB-tetrachloroethylene system, while it had higher Wo value.

  • PDF

A Study on the Identification of Hazardous Organic Substances for Industrial Classification (업종별 유해성 유기물질의 확인에 대한 연구)

  • Park, Sun Ku;Kim, Sung Soo;Ko, O Suk;Jung, Sung Woong;Park, Jun Dae;Ryu, Seung Do;Ryu, Jae Kyun;Cho, Hyun-Woo
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.392-398
    • /
    • 1996
  • Eleven organic chemical substances, tetrachloroethylene, ethyl benzene, p-xylene, o-xylene, isopropyl benzene, n-propyl benzene. 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, p-isopropyl toluene. see-butyl benzene, and naphthalene, which have hazardously influenced to human, were extracted from untreated wastewater collected at 26 companies of 8 types industry in the basin of Kwangju stream. Their structures were elucidated by Gas Chromatography/Mass Spectrometry(GC/MS) and in comparison with each standard reagents.

  • PDF

Evaporation of Volatile Chlorinated Hydrocarbons in Soils (토양의 휘발성 염화 탄화수소 화합물 증발)

  • Lee, Junho;Park, Kapsong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.78-85
    • /
    • 2008
  • Evaporation of selected toxic volatile chlorinated hydrocarbons was studied in laboratory soil columns. The evaporation values were obtained for the ten volatile chlorinated hydrocarbons at two different temperatures ($12^{\circ}C$ and $21^{\circ}C$) from columns filled with silty clay loam and sandy loam soils. 1,1,1-Trichloroethane, trichloroethylene and chloroform evaporated considerably (36.7~54.6% removal), carbon tetrachloride, 1,2-dichlorobenzene, tetrachloroethylene, 1,3-dichlorobenzene, dichlorobromethane and dibromochloromethane to a lesser extent (15.3~39.3% removal), and bromoform evaporated poorly (<10 percent removal) at both temperature. Volatile chlorinated hydrocarbons concentration did not affect evaporation, no statistically significant difference in evaporation between the soil types was found. However, temperature affected evaporation, the effect of concentration on the evaporation was not conclusive.

Purification and Characterization of a Tetrachloroethylene (PCE) Dehalogenase from Clostridium bifermentans DPH-1 (C. bifermentans DPH-1 균주로부터 정제한 테트라클로로에틸렌 (PCE) 분해효소의 제성질)

  • Chang, Young-Cheol;Jeong, Kweon;Yoo, Young-Sik;Kim, Min-Young;Shin, Jae-Young
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.14-21
    • /
    • 2000
  • DEAE-Toyopearl 650S, Superdex pg-75, Poros HQ, Superdex H200의 각종 칼러크로마토그래피를 이용하여 C.bifermentans DPH-1균주로부터 테트라클로로에틸렌(PCE) 분해 효소를 정제했다. 이 PCE 분해효소 (PCE dehalogenase)는 PCE를 환원적 탈염소화 반응에 의해 시스디클로로에딜렌 (cis-1,2-dichloroethylene)에 전환 가능하여, 이 때의 Vmax 및 Km 치는 각각 73 nmol/h.mg protein, 12$\mu$M이었다. 본 PCE dehalogenase의 겔여과 분자량 Maker Kit를 이용한 분석결과(70kDa)는 SDS-PAGE에 나타난 분자량(35kDa)의 약 2배인 것으로 확인되었다. 따라서 본 효소는 분자량 70kDa의 이량체(Homo dimer)인 것으로 추정되었다. 본 효소의 최적온도 및 pH는 각각 35$^{\circ}C$ 및 8.0 이었다. 또한 본 효소는 PCE외의 트리클로로에틸렌, 디클로로에틸렌 이성체, 1,2-디클로로에템, 1,2-디클로로프로판, 1,1,2-트리클로로에탄에 대하여도 활성을 타나내었다. N-말단 아미노산 분석결과에서도 본 효소는 현재 알려진 PCE dehalogenase와 그 배열이 전혀 다른 것으로 나타나 각종 유기염소 화합물의 분해능을 보유한 신종의 PCE 분해효소인 것이 확인되었다.

  • PDF

Desorption Characteristics of Volatile Organics Compounds in Soil by Microwave Heating (마이크로파 가열에 의한 토양 유기오염물질 탈착특성)

  • 문경환;김덕찬
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.65-73
    • /
    • 1996
  • The objective of this study is to investigate the removal efficiency of volitile organic compounds in soil, and the mechanism of desorption by bench scale microwave heating, Silt soil used for experiment and was impregnated with toluene, tetrachloroethylene, o-xylene and p-dichlorobenzene and the microwave treatment was conducted in a modified domestic microwave oven : 2450MHz, 700W. According to the results of the research the removal efficiency was improved with increasing water contents and the soil temperature appeared to plateau period extending to 2-3minutes corresponds to the temperature a which steam distillation was expected. The value of removal rate constant (k) were calculated on dry and moisty silt soil, respectively, which showed linear with increasing microwave heating time. Therefore, addition of a certain amount of water to the contaminated soil can efficiently enhance the ability of the soil to absorb microwave energy and promote the evaporation of the volitile contaminants.

  • PDF