Evaporation of Volatile Chlorinated Hydrocarbons in Soils

토양의 휘발성 염화 탄화수소 화합물 증발

  • Lee, Junho (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Park, Kapsong (Department of Environmental Science, Hankuk University of Foreign Studies)
  • 이준호 (한국외국어대학교 자연과학대학 환경학과) ;
  • 박갑성 (한국외국어대학교 자연과학대학 환경학과)
  • Received : 2007.08.21
  • Accepted : 2007.11.26
  • Published : 2008.01.30

Abstract

Evaporation of selected toxic volatile chlorinated hydrocarbons was studied in laboratory soil columns. The evaporation values were obtained for the ten volatile chlorinated hydrocarbons at two different temperatures ($12^{\circ}C$ and $21^{\circ}C$) from columns filled with silty clay loam and sandy loam soils. 1,1,1-Trichloroethane, trichloroethylene and chloroform evaporated considerably (36.7~54.6% removal), carbon tetrachloride, 1,2-dichlorobenzene, tetrachloroethylene, 1,3-dichlorobenzene, dichlorobromethane and dibromochloromethane to a lesser extent (15.3~39.3% removal), and bromoform evaporated poorly (<10 percent removal) at both temperature. Volatile chlorinated hydrocarbons concentration did not affect evaporation, no statistically significant difference in evaporation between the soil types was found. However, temperature affected evaporation, the effect of concentration on the evaporation was not conclusive.

독성 성질을 가진 휘발성 염소계 탄소수소류의 휘발특성에 대하여 실험실 규모의 토양컬럼실험을 진행하였다. 실트점토성 토양과 사질성의 양질 토양 2개 컬럼으로부터 $12^{\circ}C$, $21^{\circ}C$의 각각 다른 조건으로 실험한 결과 총 10가지의 휘발성염소계 화학물질이 검출되었다. 1,1,1-trichloroethane, trichloroethylene 그리고 chloroform은 초기 농도대비 36.7~54.6% 제거되었고 carbon tetrachloride, 1,2-dichlorobenzene, tetrachloroethylene, 1,3-dichlorobenzene, dichlorobromethane 그리고 dibromochloromethane는 초기 농도대비 15.3~39.3% 제거되었으며 특히 bromoform 물질의 경우 초기 농도대비 10%이하의 가장 낮은 저감 비율이 보였다. 염소계 탄화수소류 초기 농도값, 토양 성상은 휘발량에 큰 영향을 끼치지 않았다. 그러나, 온도비교에서 $12^{\circ}C$보다 $21^{\circ}C$에서 저감비율이 더 높았다.

Keywords

Acknowledgement

Supported by : Hankuk University of Foreign Studies

References

  1. Acher, A. J., Boderie, P. and Yaron, P. (1990). Soil pollution by petroleum products: I. Multiphase migration of kerosene components in soil columns. J. Contam. Hydrol., 4, pp. 333-345
  2. Batterman, S., Kulshrestha, A. and Cheng, H. (2005). Hydrocarbon vapor transport in low moisture soils. Environ. Sci. Technol., 29(1), pp. 171-180 https://doi.org/10.1021/es00001a022
  3. Bucala, V., Saito, H., Howard, J. B. and Peters, W. A. (1996). Products compositions and release rates from intense thermal treatment of soil. Ind. Eng. Chem. Res., 35, pp. 2725-2734 https://doi.org/10.1021/ie9505726
  4. Dilling, W. L. (1997). Interphase transfer processes. 2: Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aquifer solution, comparisons with theoretical predictions. Environ. Sci. Technol., 11, pp. 405-409
  5. Fine, P. and Yaron, B. (1993). Outdoor experiments on enhanced volatilization by venting of kerosene component from soil. J. Contam. Hydrol., 12, pp. 355-374 https://doi.org/10.1016/0169-7722(93)90005-D
  6. Galin, T., McDowell, C. and Yaron, B. (1990). The effect of volatilization on the mass flow of a non-aqueous pollutant liquid mixture in an inert porous medium: experiments with kerosene. J. Soil Sci., 41, pp. 631-641 https://doi.org/10.1111/j.1365-2389.1990.tb00232.x
  7. Goss, K. (1993). Effects of temperature and relative humidity on the sorption of organic vapors on clay minerals. Environ. Sci. Technol., 27, pp. 2127-2132 https://doi.org/10.1021/es00047a019
  8. Johnson, R. L. and Perott, M. (1990). Gasoline vapor transport through a high-water-content soil. J. Contam. Hydrol., 8, pp. 317-334
  9. Khan, I. and Ghoshal, A. K. (2000). Removal of volatile organic compounds from polluted air. J. Loss. Prevent. Proc., 13, pp. 527-545
  10. Kim, K. S., Kwon, T. W., Yang, J. S. and Yang, J. W. (2007). Simultaneous removal of chlorinated contaminants by pervaporation for the reuse of a surfactant. Desalination, 205, pp. 87-96 https://doi.org/10.1016/j.desal.2006.04.043
  11. Mackay, D. and Yeun, A. T. (1983). Mass transfer coefficient correlations for volatilization of organic solutes from water. Environ. Sic. Technol., 17, pp. 211-217 https://doi.org/10.1021/es00110a006
  12. Merino, J., Pina, J., Errazu, A. F., and Bucala, V. (2003). Fundamental study of thermal treatment of soil. Soil Sediment Contam., 12, pp. 417-441 https://doi.org/10.1080/713610981
  13. Roulet, C. A., Pibiri, M. C., Knutti, R. and Pfeiffer, A., and Weber, A. (2002). Effect of chemical composition on VOC transfer through rotating heat exchangers. Energy and Building, 34, pp. 799-807 https://doi.org/10.1016/S0378-7788(02)00098-1
  14. Ruddy, E. N. and Carroll, L. A. (1993). Select the best VOC control strategy. Chem. Eng. Prog., 89, pp. 28-35
  15. Serrano, A. and Gallego, M. (2006). Sorption study of 25 volatile organic compounds in several Mediterranean soils using headspace-gas chromatography-mass spectrometry. Journal of Chromatography, 1118, pp. 261-270 https://doi.org/10.1016/j.chroma.2006.03.095
  16. Shonnard, D. R. and Bell, R. L. (1993). Benzene emissions from a contaminated air-dry soil with fluctuations of soil temperature or relative humidity. ES&T, 27, pp. 2909-2913 https://doi.org/10.1021/es00049a034
  17. SPSS, Inc. (1993). SPSS X user's guide. SPSS, Inc., IL
  18. Xie, Z., Wang, Y., Jiang, W. and Wei, X. (2006). Evaporation and evapotransiration in a watermelon field mulched with gravel of different size. Agricultural Water Management, 81, pp. 173-184 https://doi.org/10.1016/j.agwat.2005.04.004