• Title/Summary/Keyword: Testicular spermatozoa

Search Result 85, Processing Time 0.026 seconds

Ultrastructure of Germ Cells during Spermatogenesis and Structural Changes in the Seminal Vesicle in Male Neptunea (Barbitonia) arthritica cumingii (Crosse, 1862)

  • Chung Ee Yung;Kim Sung Yeon;Ryou Dong Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • The ultrastructure of germ cells during spermatogenesis and the structural changes in the epithelial cells of the seminal vesicle with testicular development in male Neptunea (Barbitonia) arthritica cumingii were investigated monthly based on electron microscopic and histologic observations. N. arthritica cumingii (Gastropod: Buccinidae) undergoes internal fertilization and possesses a modified type of spermatozoon, which is approximately 20$\mu$m long. The axoneme of the tail flagellum consists of nine peripheral pairs of microtubules and one central pair. Many spermatozoa occur in the acini of the testis in the ripe stage and are transported to the seminal vesicles in the accumulating phase. In males, the monthly gonadosomatic index began to increase in September and reached a maximum in February. Subsequently, it decreased rapidly after April. The testis of this species can be classified into four developmental stages: the active (August to September), ripe (October to July), copulation (April to July), and recovery (July to August) stages. Structural changes in the epithelial cells of the seminal vesicles of this species could be classified into three phases: (1) S-I (resting), (2) S-II (accumulating), and (3) S-III (spent) phases. The morphology and structure of the epithelial cells of the seminal vesicle differed in each phase; the cells were cuboidal, squamous, or columnar in the resting, accumulating, or spent phases, respectively.

The Efficacy of Intracytoplasmic Sperm Injection for Previous Fertilization Failure with Conventional In Vitro Fertilization (고식적 체외수정 시술 시 수정 실패 환자에 대한 세포질내 정자주입술의 효용성)

  • Han, Myoung-Seok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2002
  • Objective : This study is to evaluate the efficacy of intracytoplasmic sperm injection (ICSI) for previous fertilization failure with conventional in vitro fetrtilization (IVF), compared with ICSI for male factor. Method: The author analyzed the 3 years of clinical experience with ICSI retrospectively, between the conventional IVF failure group (IVF failure) and male factor group (male factor). Surgically retrieved epididymal or testicular spermatozoa for ICSI were excluded. The IVF failure group was 13 cycles of 6 patients and male factor group was 30 cycles of 15 patients. Results: The fertilization rates of the IVF failure group and male factor group were 63% and 66% respectively (p=0.635). The clinical pregnancy rates of the both group were 23.1% and 26.7% (p=0.804), and that of live birth rates were 15.4% and 13.3% (p=0.858). There were no significant difference between the two groups. Conclusion: The author concluded that ICSI can overcome previous fertilization failure, with the same fertilization and clinical pregnancy rates seen in patients with male factor.

Expressions of Semenogelin Gene in Male Syrian Hamsters according to Photoperiod

  • Kim, Tae Hong;Kim, Hyeon Jeong;Lee, Sung-Ho;Cheon, Yong-Pil;Choi, Donchan
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.355-365
    • /
    • 2019
  • The morphogenetically matured spermatozoa (sperm) are generated in the testes by the spermatogenesis. They travel male reproductive tract with many substances secreted from the accessory reproductive organs. One of the substances is the semenogelin (SEMG) released from the seminal vesicles that is involved in the post-testicular maturation. The expression of SEMG gene was investigated in seminal vesicle tissues of sexually matured and regressed male Syrian hamsters by reverse transcription polymerase chain reaction (RT-PCR). The SEMG gene was uniquely identified in the seminal vesicles of the matured Syrian hamsters and compared to the genes reported previously. But the expression of SEMG gene was not observed in reproductively and completely regressed testes of Syrian hamsters. These results indicate that the expressions of the SEMG gene are related to the reproductive capability in the male Syrian hamsters.

한국동물학회 제 14회 대회기록: 유전학의 제문제

  • Ojima, Yoshio
    • The Korean Journal of Zoology
    • /
    • v.13 no.4
    • /
    • pp.112-126
    • /
    • 1970
  • This paper deals with cytogenetical and cytochemical studies of the carp (Cyprinus carpio), the funa (Carassius carassius) and their hybrids. When kept under a confined condition, the carp and the funa mate andcan produce hybrids. Reciprocal crosses are also possible with similar results. The hybrids grow regularly with no observed abnormalities in the course of their development. They rank intermediate between the parent species in several characters. The hybrid males are completely sterile, while a hybrid female laid eggs in backcrossing. The spermatogenetic activity in hybrid testes is greatly disturbed. The chromosomes as observed in spermatogonial devision of hybrids are 100 in number, being the total sum of the haploid numbers of the parents, 50 for the carp and 50 for the funa. Meiosis in the hybrid testes is highly disturbed being arrested at early stages of the meiotic prophase. Most of the germ-cells undergo pycnotic degeneration during the period from late leptotene, and no spermatozoa are produced. In some hybrid specimens, the gonads show mosaic structures composed of testicular and ovarian elements, anevidence suggesting that sterility is associated with intersexuality caused by genetic unbalance between the parent species. The DNA amount in spermatogonial nuclei of thehybrids is approximately the same as that of liver nuclei, showing the 2n value. The DNA amount in the pachytene nuclei of the hybrids is less than the 4n value, while the parent species have the reduced amount of DNA in their pachytene nuclei. A consideration was made that the reduced amount of DNA in the hybrid cells may cause the disturbance of cellular activity leading to the subsequent degeneration of cells. Some aspects of enzymatic pattern in the carp, funa and their hybrids are. going on.

  • PDF

Effects of intravenous multiple busulfan injection on suppression of endogenous spermatogenesis in recipient stallion testes

  • Jung, Heejun;Yoon, Minjung
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1194-1203
    • /
    • 2021
  • Preparation of recipient stallions is critical step to produce donor spermatogonial stem cell (SSC) derived sperm using transplantation technique. This study was conducted to evaluate the effects of intravenous busulfan infusion on germ cell depletion, semen production, and libido in stallions. Six Thoroughbred stallions were separated into two treatment groups: 1) a multiple low-dose (2.5 mg/kg bw for the first 4 weeks and 5 mg/kg bw for the 5th week); and 2) control group treated with PBS. Testicular samples were obtained at 11 weeks and classified into three different patterns of spermatogenesis, such as normal, Sertoli cell only, and destroyed. Semen collection and libido experiments were performed 1 week before treatment, and 4 and 8 weeks after treatment. For the sperm analysis, total spermatozoa and motility were measured using a light microscope with a motility analyzing system. In the multiple low-dose group, the numbers of tubules categorized as Sertoli cell only were significantly higher than those in the control as well as the total population and total/progressive motility of sperm were significantly decreased 8 weeks after the start of the treatment. The sperm production and motility in the multiple low-dose group appears to be reduced, while libido was maintained. In conclusion, multiple administration of 2.5 mg/kg bw busulfan depletes endogenous germ cells in the stallion recipients for SSC transplantation.

Update on genetic screening and treatment for infertile men with genetic disorders in the era of assisted reproductive technology

  • Lee, Seung Ryeol;Lee, Tae Ho;Song, Seung-Hun;Kim, Dong Suk;Choi, Kyung Hwa;Lee, Jae Ho;Kim, Dae Keun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • A genetic etiology of male infertility is identified in fewer than 25% of infertile men, while 30% of infertile men lack a clear etiology, resulting in a diagnosis of idiopathic male infertility. Advances in reproductive genetics have provided insights into the mechanisms of male infertility, and a characterization of the genetic basis of male infertility may have broad implications for understanding the causes of infertility and determining the prognosis, optimal treatment, and management of couples. In a substantial proportion of patients with azoospermia, known genetic factors contribute to male infertility. Additionally, the number of identified genetic anomalies in other etiologies of male infertility is growing through advances in whole-genome amplification and next-generation sequencing. In this review, we present an up-to-date overview of the indications for appropriate genetic tests, summarize the characteristics of chromosomal and genetic diseases, and discuss the treatment of couples with genetic infertility by microdissection-testicular sperm extraction, personalized hormone therapy, and in vitro fertilization with pre-implantation genetic testing.

Blood-Testis Barrier and Sperm Delayed in the Cauda Epididymis of the Reproductively Regressed Syrian Hamsters

  • Jeon, Geon Hyung;Lee, Sung-Ho;Cheon, Yong-Pil;Choi, Donchan
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Syrian (golden) hamsters are seasonal breeders whose reproductive functions are active in summer and inactive in winter. In experimental facility mimicking winter climate, short photoperiod (SP) induces gonadal regression. The blood-testis barrier (BTB) of the sexually involuted animals have been reported to be permeable, allowing developing germ cells to be engulfed or sloughed off the epithelium of the seminiferous tubules. The expressions of genes related to the tight junction composing of BTB were investigated in the reproductive active and inactive testes. Claudin-11, occludin, and junctional adhesion molecule (JAM) were definitely expressed in the active testes but not discernably detected in the inactive testes. And spermatozoa (sperm) were observed in the whole lengths of epididymides in the active testes. They were witnessed in only cauda region of the epididymides but not in caput and corpus regions in animals with the inactive testes. The results imply that the disorganization of BTB is associated with the testicular regression. The developing germ cells are swallowed into the Sertoli cells or travel into the lumen, as supported by the presence of the sperm delayed in the last region of the epididymis. These outcomes suggest that both apoptosis and desquamation are the processes that eliminate the germ cells during the regressing stage in the Syrian hamsters.

Gametogenesis and Reproductive Cycle of the Cockle, Fulvia mutica (Reeve) (새조개, Fulvia mutica (Reeve)의 생식세포형성과정 및 생식주기)

  • CHANG Young Jin;LEE Taek Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.241-250
    • /
    • 1982
  • The structure of gonads, gametogenesis and reproductive cycle of the cockle, Fulvia mutice, were studied mainly by histological observation. The materials were monthly sampled in the southern area of Yeosu from October 1980 to September 1981. F. mutica was monoecious. The gonads were situated between the liver tissues and the outer fibronuscular layers compacted by the connective tissue fibers and muscle fibers beneath the outermost layer of simple cuboidal epithelium. The gonad was composed of a number of the ovarian sacs and the testicular tubules which form the tubular structure. Testicular tubules in the mature stage sometimes contained 'testis-ova' The undifferentiated mesenchymal tissues and the eosinophilic cells were abundantly distributed on the germinal epithelium in the early development stage. With the further development of the ovary and testis, these tissues and cells gradually disapprared. The undifferentiated mesenchymal tissues and the eosinophilic cells are related to the growing of the oocytes and spermatocytes . Early multiplicating oogonium was about $10{\mu}m$ in diameter. As the oocytes grow to $27-34\times50-58{\mu}m$ by increasing cytoplasm, the oocytes connected to the basement membrane by their egg-stalks. The ripe eggs were about $60{\mu}m$ in diameter and they were surrounded by gelatinous membrane. Most male germ cells in mature stage were transformed into the spermatozoa and they formed the sperm bundles. After spawning, undischarged ripe eggs and spermatozoa remained in the ovarian sac and the testicular tubule respectively for some time, then they finally degenerated. Especially the early spent ovarian sacs in May did not contract significantly and then they took part in the secondary maturation within two or three months during the summer season. The monthly changes of the fatness well agreed with the reproductive cycle. The reproductive cycle of F. mutica could be classified into six successive stages : multiplicative, growing, mature, spent, degenerative and recovery stage. It seems that the spawning season is closely rotated to the water temperature, and the spawning occurs from May to October at about $20^{\circ}C$ in water temperature. The peak spawning seasons appeared twice a year between June and July and in September. Acknowledgement The authors wish to express their gratitude to Dr. Kim, In Bae, Dr. Chun, Seh Kyu and Dr. Yoo, Sung Kyoo of National Fisheries University of Busan and Mr. Min, Byoung Seo of National fisheries Research and Development Agency for their critical reading of the manu script.

  • PDF

Testicular Characteristics and the Block to Spermatogenesis in Mature Hinny

  • Han, Hongmei;Wang, Aihong;Liu, Liming;Zhao, Gaoping;Su, Jie;Wang, Biao;Li, Yunxia;Zhang, Jindun;Wu, Baojiang;Sun, Wei;Hu, Shuxiang;Li, Shuyu;Zhao, Lixia;Li, Xihe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.793-800
    • /
    • 2016
  • Most hinnies (female donkey${\times}$male horse) and mules (female horse${\times}$male donkey) are sterile with few reports of equine fertile hybrids. The main cause of this sterility is thought to be a meiotic block to spermatogenesis and oogenesis. This study compared the developmental features of the testes and a histological analyses of spermatogenesis in a male hinny with those of a normal, fertile stallion and Jack donkey. Hinny testes showed a thicker tunica albuginea, fewer blood vessels and more connective tissue in the testis parenchyma than those of the stallion and Jack donkey. Although the mean number of seminiferous tubules was significantly higher in stallion and hinny than Jack donkey (p<0.01), the mean proportion of seminiferous tubules was lower in the hinny (p<0.01) which resulted in a smaller diameter of seminiferous tubules. The mean number of spermatogonia and spermatocytes per unit area were significantly lower in hinny testis (p<0.01) and no spermatids or mature spermatozoa cells were found during immunofluorescent analyses. These results indicated that defects in seminiferous tubule development and structure occur in the testis of hinnies. Furthermore, most spermatogonia and spermatocytes cease development in synapsis during mid-meiosis of spermatocytes, which results in a block to spermatogenesis that prevents the formation of spermatids and matured spermatozoa during meiosis in male hinnies.

Effect of Testosterone Administration on the Spermatogenesis in Rats (Testosterone의 투여(投與)가 흰쥐의 조정기능(造精機能)에 미치는 영향(影響))

  • Lee, Kyu Seung
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.405-413
    • /
    • 1975
  • The objective of this study was to examine the effect of testosterone on the spermatogenesis. Testosterone propionate was administered in 20 mg dose to male rat with 10 days interval for 50 days and the treated rat was compared with normal one in their testis weight and histological changes. The results were as follows: 1. The longer treatment gave the more decreased testis weight. Treated rat for more than 20 days was significantly different from the untreated one. 2. Diameter of seminiferous tubule was significantly reduced in 40 and 50 days treatments. 3. The ratio of disrupted spermatogenesis on seminiferous tubles was significantly increased from 20 days treatment. 4. On volumetric proportion of testicular structure, spermatozoa and spermatid were significantly reduced from 20 and 30 days treatments respectively. Other components in testis were not changed. 5. The administration of testosterone in over dose damages spermatozoa and spermatid more than other components in testis.

  • PDF