Browse > Article
http://dx.doi.org/10.5187/jast.2021.e80

Effects of intravenous multiple busulfan injection on suppression of endogenous spermatogenesis in recipient stallion testes  

Jung, Heejun (Department of Animal Science and Biotechnology, Kyungpook National University)
Yoon, Minjung (Department of Animal Science and Biotechnology, Kyungpook National University)
Publication Information
Journal of Animal Science and Technology / v.63, no.5, 2021 , pp. 1194-1203 More about this Journal
Abstract
Preparation of recipient stallions is critical step to produce donor spermatogonial stem cell (SSC) derived sperm using transplantation technique. This study was conducted to evaluate the effects of intravenous busulfan infusion on germ cell depletion, semen production, and libido in stallions. Six Thoroughbred stallions were separated into two treatment groups: 1) a multiple low-dose (2.5 mg/kg bw for the first 4 weeks and 5 mg/kg bw for the 5th week); and 2) control group treated with PBS. Testicular samples were obtained at 11 weeks and classified into three different patterns of spermatogenesis, such as normal, Sertoli cell only, and destroyed. Semen collection and libido experiments were performed 1 week before treatment, and 4 and 8 weeks after treatment. For the sperm analysis, total spermatozoa and motility were measured using a light microscope with a motility analyzing system. In the multiple low-dose group, the numbers of tubules categorized as Sertoli cell only were significantly higher than those in the control as well as the total population and total/progressive motility of sperm were significantly decreased 8 weeks after the start of the treatment. The sperm production and motility in the multiple low-dose group appears to be reduced, while libido was maintained. In conclusion, multiple administration of 2.5 mg/kg bw busulfan depletes endogenous germ cells in the stallion recipients for SSC transplantation.
Keywords
Busulfan; Germ cell depletion; Sperm; Stallion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Igdoura SA, Wiebe JP. Suppression of spermatogenesis by low-level glycerol treatment. J Androl. 1994;15:234-43.
2 van den Aardweg GJ, de Ruiter-Bootsma AL, Kramer MF, Davids JA. Growth and differentiation of spermatogenetic colonies in the mouse testis after irradiation with fission neutrons. Radiat Res. 1983;94:447-63. https://doi.org/10.2307/3575904   DOI
3 van Pelt AMM, Roepers-Gajadien HL, Gademan IS, Creemers LB, de Rooij DG, van Dissel-Emiliani FM. Establishment of cell lines with rat spermatogonial stem cell characteristics. Endocrinology. 2002;143:1845-50. https://doi.org/10.1210/endo.143.5.8806   DOI
4 Moisan AE, Foster RA, Betteridge KJ, Hahnel AC. Dose-response of RAG2-/-/gammac-/- mice to busulfan in preparation for spermatogonial transplantation. Reproduction. 2003;126:205-16. https://doi.org/10.1530/rep.0.1260205   DOI
5 Iwamoto T, Hiraku Y, Oikawa S, Mizutani H, Kojima M, Kawanishi S. DNA intrastrand cross-link at the 5'-GA-3' sequence formed by busulfan and its role in the cytotoxic effect. Cancer Sci. 2004;95:454-8. https://doi.org/10.1111/j.1349-7006.2004.tb03231.x   DOI
6 Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol. 1998;9:411-6. https://doi.org/10.1006/scdb.1998.0203   DOI
7 Zini A, Phillips S, Lefebvre J, Baazeem A, Bissonnette F, Kadoch IJ, et al. Anti-sperm antibodies are not associated with sperm DNA damage: a prospective study of infertile men. J Reprod Immunol. 2010;85:205-8. https://doi.org/10.1016/j.jri.2010.03.006   DOI
8 Bignold LP. Alkylating agents and DNA polymerases. Anticancer Res. 2006;26:1327-36.
9 Hur TY, Lee SH, Ock SA, Song H, Park HJ, Lee R, et al. Dose-dependent effects of busulfan on dog testes in preparation for spermatogonial stem cell transplantation. Lab Anim Res. 2017;33:264-9. https://doi.org/10.5625/lar.2017.33.3.264   DOI
10 Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA. 1994;91:11298-302. https://doi.org/10.1073/pnas.91.24.11298   DOI
11 Creemers LB, Meng X, den Ouden K, van Pelt AMM, Izadyar F, Santoro M, et al. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation. Biol Reprod. 2002;66:1579-84. https://doi.org/10.1095/biolreprod66.6.1579   DOI
12 Iwamoto M, Sugai T, Nakaoka Y. Cell division induced by mechanical stimulation in starved Tetrahymena thermophila: cell cycle without synthesis of macronuclear DNA. Cell Biol Int. 2004;28:503-9. https://doi.org/10.1016/j.cellbi.2004.04.004   DOI
13 Honaramooz A, Behboodi E, Hausler CL, Blash S, Ayres S, Azuma C, et al. Depletion of endogenous germ cells in male pigs and goats in preparation for germ cell transplantation. J Androl. 2005;26:698-705. https://doi.org/10.2164/jandrol.05032   DOI
14 Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897-906. https://doi.org/10.1016/S0092-8674(00)80165-8   DOI
15 Iwamoto M, Nakaoka Y. External GTP binding and induction of cell division in starved Tetrahymena thermophila. Eur J Cell Biol. 2002;81:517-24. https://doi.org/10.1078/0171-9335-00267   DOI
16 Marcon L, Zhang X, Hales BF, Robaire B, Nagano MC. Effects of chemotherapeutic agents for testicular cancer on rat spermatogonial stem/progenitor cells. J Androl. 2011;32:432-43. https://doi.org/10.2164/jandrol.110.011601   DOI
17 Jung H, Roser JF, Yoon M. UTF1, a putative marker for spermatogonial stem cells in stallions. PLOS ONE. 2014;9:e108825. https://doi.org/10.1371/journal.pone.0108825   DOI
18 de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998;1:1-8. https://doi.org/10.1093/humrep/13.suppl_1.1   DOI
19 Franca LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology. 2016;4:189-212. https://doi.org/10.1111/andr.12165   DOI
20 Hermann BP, Sukhwani M, Lin CC, Sheng Y, Tomko J, Rodriguez M, et al. Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells. 2007;25:2330-8. https://doi.org/10.1634/stemcells.2007-0143   DOI
21 Wiebe JP, Barr KJ. The control of male fertility by 1,2,3-trihydroxypropane (THP; glycerol): rapid arrest of spermatogenesis without altering libido, accessory organs, gonadal steroidogenesis, and serum testosterone, LH and FSH. Contraception. 1984;29:291-302. https://doi.org/10.1016/S0010-7824(84)80009-8   DOI
22 Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125:769-84. https://doi.org/10.1530/rep.0.1250769   DOI
23 Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA. 1994;91:11303-7. https://doi.org/10.1073/pnas.91.24.11303   DOI
24 Honaramooz A, Behboodi E, Blash S, Megee SO, Dobrinski I. Germ cell transplantation in goats. Mol Reprod Dev. 2003;64:422-8. https://doi.org/10.1002/mrd.10205   DOI
25 Dobrinski I. Germ cell transplantation in pigs--advances and applications. Soc Reprod Fertil Suppl. 2006;62:331-9.
26 Voglmayr JK, Waites GM, Setchell BP. Studies on spermatozoa and fluid collected directly from the testis of the conscious ram. Nature. 1966;210:861-3. https://doi.org/10.1038/210861b0   DOI
27 Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction. 2008;136:823-31. https://doi.org/10.1530/REP-08-0226   DOI
28 Jung H, Yoon M. Effects of intratesticular injection of 70% glycerin on stallions. J Equine Vet Sci. 2017;49:1-10. https://doi.org/10.1016/j.jevs.2016.09.002   DOI
29 Brinster CJ, Ryu BY, Avarbock MR, Karagenc L, Brinster RL, Orwig KE. Restoration of fertility by germ cell transplantation requires effective recipient preparation. Biol Reprod. 2003;69:412-20. https://doi.org/10.1095/biolreprod.103.016519   DOI
30 Izadyar F, Matthijs-Rijsenbilt JJ, den Ouden K, Creemers LB, Woelders H, de Rooij DG. Development of a cryopreservation protocol for type A spermatogonia. J Androl. 2002;23:537-45.
31 Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11:715-26. https://doi.org/10.1016/j.stem.2012.07.017   DOI
32 Ogawa T, Arechaga JM, Avarbock MR, Brinster RL. Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol. 1997;41:111-22.
33 Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8:365-75. https://doi.org/10.1016/j.devcel.2004.12.016   DOI
34 Ogawa T, Dobrinski I, Brinster RL. Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell. 1999;31:461-72. https://doi.org/10.1054/tice.1999.0060   DOI
35 Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci USA. 2001;98:6186-91. https://doi.org/10.1073/pnas.111158198   DOI
36 Bucci LR, Meistrich ML. Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat Res. 1987;176:259-68. https://doi.org/10.1016/0027-5107(87)90057-1   DOI
37 Shuttlesworth GA, de Rooij DG, Huhtaniemi I, Reissmann T, Russell LD, Shetty G, et al. Enhancement of A spermatogonial proliferation and differentiation in irradiated rats by gonadotropin-releasing hormone antagonist administration. Endocrinology. 2000;141:37-49. https://doi.org/10.1210/endo.141.1.7272   DOI
38 Kumaravelu P, Hook L, Morrison AM, Ure J, Zhao S, Zuyev S, et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development. 2002;129:4891-9. https://doi.org/10.1242/dev.129.21.4891   DOI