• Title/Summary/Keyword: Test small chamber

Search Result 150, Processing Time 0.025 seconds

An Experimental Study on the Characteristics of Sodium Fires (나트륨 화재 특성의 실험적 연구)

  • Bae, Jae-Heum;Ahn, Do-Hee;Kim, Young-Cheol;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.471-483
    • /
    • 1994
  • A sodium fire facility with a test chamber of 1.7㎥ volume was constructed and operated to carry out experiments of sodium fires such as pool, spray, and columnar fires which might take place in sodium-related facilities. The experimental results of pool fires showed that the increase of temperature and pressure in the test chamber was much smaller than that of spray and columnar fires even though their amount of sodium injection in the chamber was much larger compared to other types of fires. And it was found in pool fires that the temperatures of sodium pool and the gas temperature in the test chamber had been maintained much longer than other types of fires, and that the chamber pressure had come to vacuum due to depletion of the oxygen for a large amount of sodium injection in the chamber. The experimental results of spray fires showed that sprayed sodium of small particles instantly reacted with oxygen, and that its reaction heat increased gas temperature and pressure of the test chamber rapidly and decreased them shortly. And the maximum gas temperature and pressure of the test chamber in spray fires ore greatly changed according to the inlet sodium temperature in the test chamber. The characteristics of the columnar fires were almost similar to those of spray fires, but the maximum temperature and pressure of the test chamber were much smaller even for a large amount of sodium injection. And it was shown in spray and columnar fires that the temperatures at each measurement position in the test chamber were quite different due to the instantaneous sodium oxidation in comparision with pool fires. Finally, the graphex powder was proved to be a very effective extinguisher against sodium pool fires.

  • PDF

Evaluation of sampling and analytical method for emission experiment of pollutants in building materials using small chamber (소형챔버를 이용한 건축자재 오염물질 방출시험방법 평가)

  • Lee, Suk-Jo;Jang, Seong-Ki;Kim, Mi-Hyun;Lee, Hong-Suk;Lim, Jun-Ho;Jang, Mee;Seo, Soo-Yun
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.344-354
    • /
    • 2005
  • This study was carried out to evaluate the performance of a small chamber sampling and analytical method for the measurement of total volatile organic compounds (TVOC) and formaldehyde (HCHO) emission from building materials. While VOC was determined by the adsorbent tube sampling and sequential thermal desorption coupled with GC/MSD analysis, formaldehyde sampled with DNPH-silica cartridge was analyzed by HPLC. Wide-range performance criteria such as repeatability, desorption efficiency, emission chamber recovery test, duplicate precision, breakthrough volume and method detection limits were investigated for the evaluation of small chamber method. The overall precision of the small chamber sampling and analytical methods was estimated within 20~30% for target compounds. In conclusion, this study demonstrated that the small chamber sampling and analytical method can be reliably applied for the measurement of building materials pollutants.

Comparison of Small Current Interruption Capability Depending on the Type of Interrupter (차단부 형태에 따른 소전류 차단성능 비교)

  • Song, Ki-Dong;Chong, Jin-Kyo;Kim, Hong-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.362-368
    • /
    • 2006
  • This paper presents the results of a small capacitive current interruption test for the three types of interrupter which are called 'serial type', 'parallel/separated type' and 'puffer type' according to the arrangement of the thermal expansion chamber and the puffer cylinder. After the preconditioning test the small current interruption capability of the 'puffer type' decreased, on the contrary, that of the hybrid interrupters increased. A number of reignition have been occurred in the 'serial type' hybrid interrupter and the change of small current interruption capability after preconditioning test is mainly influenced by the structure of interrupter. Finally it has been proved that the 'parallel/separated type' hybrid interrupter has the best interruption performance through the verification tests.

Measurement of Small-Strain Shear Modulus Using Pressuremeter Test (공내재하시험기를 이용한 미소변형 전단탄성계수 측정)

  • Kim, Dong-Su;Park, Jae-Yeong;Lee, Won-Taek
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.109-120
    • /
    • 1997
  • In the working stress conditions, the strain level in a soil mass experienced by existing structures and during construction is less than about 0.1-1%. In order to analyse the deformational behavior accurately, the in-situ testing technique which provides the reliable deformational characteristics at small strains, needs to be developed. The purpose of this paper is to measure the small-strain shear modulus of soils by using pressuremeter test(PMT). PMT is a unique method for assessing directly the in-situ shear modulus of soils with strain amplitude. For the accurate small strain measurements without initial disturbance effect, the unloading-reloading cycle was used and the measured modulus was corrected in view of the relevant stress and strain levels around the PMT probe during testing. Not only in the calibration chamber but in the field, PMT tests were performed on the cohesionless soils. The variation in shear modulus with strain amplitude ranging from 10-2% to 0.5% was reliably determined by PMT PMT results were also compared with other in-situ and laboratory test results. Moduli obtained from different testing techniques matched very well if the effect of strain amplitude was considered in the com pall son.

  • PDF

Performance Characteristics of GCH4-LOx Small Rocket Engine According to the Equivalence Ratio Variation at a Constant Pressure of Combustion Chamber (동일한 연소실 압력에서의 당량비 변화에 따른 기체메탄-액체산소 소형로켓엔진의 성능특성)

  • Yun Hyeong Kang;Hyun Jong Ahn;Chang Han Bae;Jeong Soo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.34-42
    • /
    • 2022
  • A correlation between propellant supply condition and chamber pressure in GCH4-LOx small rocket engine was explored and hot-firing tests were conducted to analyze the engine performance characteristics according to the equivalence ratio variation at a constant chamber pressure. Correlation studies have shown that chamber pressure is linearly proportional to oxidizer supply pressure. As a result of the test, the thrust, specific impulse and characteristic velocity that are the main performance parameters of a rocket engine, were found to be enhanced as the equivalence ratio starting from a fuel-lean condition approached the stoichiometric ratio, but the efficiencies of characteristic velocity and specific impulse were on the contrary, in their dependency on the equivalence ratio.

A Study on the Explosion to Fire Transition Phenomena of Liquidfied Petroleum Gas (LP가스 폭발로부터 화재로의 천이에 관한 연구)

  • 오규형;이춘하
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.107-113
    • /
    • 1993
  • Small rectangular explosion chamber of its size 25cmX25cmX32cm with a circular bursting diaphram at the top was used to study the mechanism of gas explosion to fire transition phenomena, the process of ignition of solid combustibles during a gas explosion. To visulize the explosion to fire transition phenomena, transparent acryl window and high speed camera system were used. The test piece of solid combustible in this experiments was a 5cm$\times$5cm square sheet of newspaper which was placed in the explosion chamber filled with a LPG-air mixture. The mixture was ignited by an electric spark at the center of the chamber. Explosion to fire transition phenomena and the behavior of out flow and in flow of gas through the opening yielded by bursting the diaphram was visualized with shlieren system and without shlieren system. Diameter of a bursting dlaphram at the top of the explosion chamber was varied 5cm, 10cm, and 15cm, and the position of test piece were varied with 6 point. Explosion pressure was measured with strain type pressure transducer, and the weight difference of the test piece before and after each experimental run was measured. By comparing the weight difference of solid combustibles before and after the experiment and the behavior of out flow and inflow of gas after explosion, it was found that the possibility of ignition was depends on the LPG-air mixture concentration and the exposure period of test piece to the burnt gas. Test result of this experiments it was found that the main factor of this phenomena are that heat transfer to the test piece, and the pyrolysis reaction of test piece. Based on the results, the mechanism of the explosion to fire transition phenomena were inferred ; gas explosion- heat transfer to solid combustibiles ; pyrolysis reaction of solid combutibles : air inflow ; mixing of the pyroly gas with air ignition.

  • PDF

A Prediction Model for TVOC and HCHO Emission of Paint Materials (페인트에서 방출되는 TVOC 및 HCHO 방출량 예측모델)

  • Kim, Hyung-Soo;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • It is highly recognized that there is need for protection against indoor air pollution, as we realize environmental pollution is growing, For example, in an indoor environment, a person spends more than 80 percent of their time inside the building. Thus, concern about indoor decoration materials is growing, since they cause pollution in the rooms of an apartment, as well as in offices. As the indoor decoration materials become more diverse and lusurious, so the effect of VOCs(Volatile Organic Compounds) and HCHO(Formaldehy) is growing. The indoor decoration materials cause the Sick Building Syndrome, such as headaches, dizziness, or lack of concentraion, and they in turn cause serious deterioration in people's health. In this study, I probed the status of the indoor air pollution and carried on an investigation and analysis about the prevention technique. In doing so, I performed experimental tests and an assessment of the indoor decoration materials of an apartment. I also examined elements of the emitted and the emission. Finally, I examined the character of emissions, by changing environmental conditions, such as the temperature, humidity, and ventilation. With respect to VOCs tests, I applied the method of solid state adsorption using the adsorptive tube, based on the measurement of the American EPA TO-17, ASTM 5116-97, and the measurement of the Japanese Wall Decoration Industrial Association. The tested sample was analyzed by High Performance Liquid Chromatography, after going through the process of dissolvent extraction. As subjects of the test, Paint were selected. The process of this test is as follows; first, I figured out the character of the emission, by measuring the emitted concentration of VOCs and HOHC from the indoor decoration materials of an apartment. Second, I made a small-scale chamber and the test was processed in the chamber in order to suggest an environment-friendly prediction modlel development.

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.103-115
    • /
    • 2013
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine have been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.603-615
    • /
    • 2012
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine has been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

  • PDF

Load Transfer Characteristics of Pile Foundation for Lightweight Pavement in Sand Soil using Laboratory Chamber Test (모형챔버시험을 이용한 사질토 지반의 경량포장체용 기초의 하중전달 특성)

  • Shin, Kwang-Ho;Hwang, Cheol-Bi;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4588-4594
    • /
    • 2014
  • In this study, small scaled (1/30) laboratory chamber tests of the pile foundation for a lightweight concrete pavement system were carried out to evaluate the safety of a pile foundation on sandy soil. The testing ground was simulated in the field and a standard pile-loading test was conducted. The test piles were divided into 3 types, Cases A, B and C, which is the location from the center of the slab by applying a vertical load. The interval between the piles was set to 8 cm. As a result of the pile foundation model test, the pavement settled when the vertical load was increased to 12kg from 1.5kg in sandy soil ground, particularly the maximum settlement of 0.04mm. Judging from the model chamber test, Case A showed compressive deformation, whereas Case B represented the compression and tensile forces with increasing vertical load. Case C showed an increase in tensile strain.