• 제목/요약/키워드: Test section

검색결과 3,101건 처리시간 0.029초

Investigation of the Hydraulic Stability of Agricultural Drainage Channels Installed Water Purification Materials by using Flow-3D (Flow-3D를 활용한 수질정화체가 설치된 농업용 배수로의 안정성 조사)

  • Kim, Sun-Joo;Park, Ki-Chun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제49권5호
    • /
    • pp.3-9
    • /
    • 2007
  • In this study, the effect of the purification materials is analyzed and tested by Flow 3D and Hydraulic model test. Three dimension numerical analysis led from the research that sees abnormal form and the size back of the water purification material conferred the flowing water conduct inside the test channel against the test condition. Comparison it analyzed the flux distribution, a water depth of the channel which establishes the water purification materials the cross section, an interval of the water purification material, a conference with general channel, it change executed. As a result, the cross section ratio of the purification materials against and a flux change from the test which it sees. The interval of the purification materials in order to prevent three dimension that follows in decrease of increase and flux must decide an interval.

Evaluation of Field Calibration Test on Rail for Train Wheel Force Measurement

  • Sim, Hyoung-Bo;Yeo, Inho
    • International Journal of Railway
    • /
    • 제8권1호
    • /
    • pp.1-4
    • /
    • 2015
  • An accurate measurement of the train-track interaction forces is important for track performance evaluation. In the field calibration test as a wheel load measurement process, the calibration system creates a different boundary condition in comparison with that in the train wheel passage. This study aims to evaluate a reliability of the field calibration test in the process of wheel load measurement. Finite element models were developed to compare the deformed shapes, bending moment and shear force profiles on the rail section. The analysis results revealed that the deformed shapes and their associated bending moment profiles on the rail are significantly different in two numerical simulations of the calibration test and the train wheel load passage. However, the shear stress profile on the rail section of the strain gauge installation in the field was almost identical, which may imply that the current calibration test is sufficiently reliable.

Heat Transfer Coefficients of Concentric Annuli for Testing Heat Transfer Characteristics of Alternative Refrigerants in Tubes (대체냉매 관내 열전달특성 시험을 위한 동심이중원관의 환상유로의 열전달계수)

  • KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • 제32권1호
    • /
    • pp.63-67
    • /
    • 2021
  • Accurate measurements of the heat transfer coefficients of concentric annular space for the test section is important to measure the tube-side heat transfer coefficients of working fluids. This paper presents the annular side heat transfer coefficients of concentric annuli with variation of tube diameter ratios using Wilson plot method. The test facility has a straight, horizontal test section with an active length of 3.0 m. Inner/outer diameters of test tubes are 7.0/7.5 and 8.0/8.56 mm, respectively. An outer diameter of annulus side is 16.0 mm. The test results show that convective heat transfer coefficients in annuli increase with annular diameter ratio. The correlations for convective heat transfer coefficients in annuli are also developed.

Study of investigation the present states of operating teaching and learning methode in relation to vocation inquiry section (직업탐구 영역 관련 교과의 교수·학습 방법 운용 실태 조사 연구)

  • Lee, Yong-Soon;Lee, Byung-Wook;Bae, Dong-Yoon
    • 대한공업교육학회지
    • /
    • 제30권2호
    • /
    • pp.23-32
    • /
    • 2005
  • The purpose of this study is to investigate and analyze the actual state of teaching and learning methods which are applied to the vocation inquiry section-related subjects of the College Scholastic Ability Test(CSAT) by the teachers who teach specialized subjects of vocational high schools. In order for us to get the background and feature of establishment in the area of vocation inquiry section of the CSAT, previous studies and literature was analyzed and sample survey on the 600 teachers who teach the vocation inquiry section-related subjects was made. The result of this survey is as shown below; First, the teachers who are in charge of vocation inquiry section-related subjects understand that theory and practice is in the ratio 60.76:39.24 and ratio of theory is higher than that of practice. Second, teaching and learning method which is the most relevant to the vocation inquiry section is in the order of lecture(83.9%), experiment & practice(50.4%), computerized learning(41.1%). Third, teaching and learning method which is the most used by the teachers who are in charge of vocation inquiry section-related subjects is in the order of lecture(85.8%), computerized learning(50.1%), experiment and practice(44.4%). Forth, the most desirable teaching and learning method which the teachers who are in charge of vocation inquiry section for this subject believe is in the order of lecture(62.7%) experience & practice(47.7%), computerized learning(44.4%). In light of this result, even though there were not so much difference among the teaching-learning methods which are the most consistent with the contents of the subject in relation to the vocation inquiry section, the most used teaching-learning method by the teachers who teach vocation inquiry section-related subjects and the most desirable teaching-learning method which the teachers who are in charge of vocation inquiry section believe, the most used teaching-learning method by the teachers who are in charge of the vocation inquiry section is lecture. Therefore, it is necessary for us to reinforce the contents in relation to the practice & experiment so that the experience and application can be accumulated and improved through practice which is the specialty of the course of the study in the vocational high school and various teaching and learning method should be developed in consideration of contents of the subject, capability & quality of the learners and status of a classroom.

A re-examination of the current design rule for staggered bolted connections

  • Xue-Mei Lin;Michael C.H. Yam;Ke Ke;Binhui,Jiang;Qun He
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.403-416
    • /
    • 2023
  • This paper summarised and re-examined the theoretical basis of the commonly used design rule developed by Cochrane in the 1920s to consider staggered bolt holes in tension members, i.e., the s2/4g rule. The rule was derived assuming that the term two times the bolt hole diameter (2d0) in Cochrane's original equation could be neglected, and assuming a value of 0.5 for the fractional deduction of a staggered hole in assessing the net section area. Although the s2/4g rule generally provides good predictions of the staggered net section area, the above-mentioned assumptions used in developing the rule are doubtful, in particular for a connection with a small gauge-to-bolt-hole diameter (g/d0) ratio. It was found that the omission of 2d0 in Cochrane's original equation appreciably overestimates the net section area of a staggered bolted connection with a small g/d0 ratio. However, the assumed value of 0.5 for the fractional deduction of a staggered hole underestimates the staggered net section area for small g/d0 ratios. To improve the applicability of the above two assumptions, a modified design equation, which covers a full range of g/d0 ratio, was proposed to accurately predict the staggered net section area and was validated by the existing test data from the literature and numerical data derived from this study. Finally, a reliability analysis of the test and numerical data was conducted, and the results showed that the reliability of the modified design equation for evaluating the net section resistance of staggered bolted connections can be achieved with the partial factor of 1.25.

Using scratch test to evaluate cohesive bond strength of Mo composite coating

  • Koiprasert, Hathaipat;Thaiwatthana, Sirinee;Sheppard, Panadda
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.34-41
    • /
    • 2015
  • Bonding strength of a thermal sprayed coating is difficult to measure using a conventional pull-off test method. Scratch test is a potential alternative testing method. An adhesive and a cohesive bond strength of the coating can be measured by the pull-off test while the scratch test performed on the cross-section of the thermal sprayed coating can only demonstrate the cohesive bond strength of the coating. Nevertheless, it is still beneficial to perform the scratch testing on the cross-section of the coating for the sake of comparison thus providing an alternative to the pull-off test. The scratch test method can reduce testing time and cost in the long run due to a significant cost reduction in consumables and energy and time saving from the curing step of the glue used in the pull-off test. This research investigates the possibility of using the scratch test to measure the cohesive bond strength of Mo/NiCrBSi composite coating. The results from the pull-off test and the scratch test indicate that the cohesive bond strengths of the Mo composite coating show similar trend and that the cohesive bond strength are increased when increasing NiCrBSi content.

Comparison of Reproducibility of Linear Measurements on Digital Models among Intraoral Scanners, Desktop Scanners, and Cone-beam Computed Tomography

  • Jo, Deuk-Won;Kim, Mijoo;Kim, Reuben H.;Yi, Yang-Jin;Lee, Nam-Ki;Yun, Pil-Young
    • Journal of Korean Dental Science
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2022
  • Purpose: Intraoral scanners, desktop scanners, and cone-beam computed tomography (CBCT) are being used in a complementary way for diagnosis and treatment planning. Limited patient-based results are available about dimensional reproducibility among different three-dimensional imaging systems. This study aimed to evaluate dimensional reproducibility among patient-derived digital models created from an intraoral scanner, desktop scanner, and two CBCT systems. Materials and Methods: Twenty-nine arches from sixteen patients who were candidates for implant treatments were enrolled. Different types of CBCT systems (KCT and VCT) were used before and after the surgery. Polyvinylsiloxane impressions were taken on the enrolled arches after the healing period. Gypsum casts were fabricated and scanned with an intraoral scanner (CIOS) and desktop scanner (MDS). Four test groups of digital models, each from CIOS, MDS, KCT, and VCT, respectively, were compared to the reference gypsum cast group. For comparison of linear measurements, intercanine and intermolar widths and left and right canine to molar lengths were measured on individual gypsum cast and digital models. All measurements were triplicated, and the averages were used for statistics. Bland-Altman plots were drawn to assess the degree of agreement between each test group with the reference gypsum cast group. A linear mixed model was used to analyze the fixed effect of the test groups compared to the reference group (α=0.05). Result: The Bland-Altman plots showed that the bias of each test group was -0.07 mm for CIOS, -0.07 mm for MDS, -0.21 mm for VCT, and -0.25 mm for KCT. The linear mixed model did not show significant differences between the test and reference groups (P>0.05). Conclusion: The linear distances measured on the digital models created from CIOS, MDS, and two CBCT systems showed slightly larger than the references but clinically acceptable reproducibility for diagnosis and treatment planning.

Seismic response of steel reinforced concrete spatial frame with irregular section columns under earthquake excitation

  • Xue, Jianyang;Zhou, Chaofeng;Liu, Zuqiang;Qi, Liangjie
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.337-347
    • /
    • 2018
  • This paper presents some shaking table tests conducted on a 1/4-scaled model with 5-story steel reinforced concrete (SRC) spatial frame with irregular section columns under a series of base excitations with gradually increasing acceleration peaks. The test frame was subjected to a sequence of seismic simulation tests including 10 white noise vibrations and 51 seismic simulations. Each seismic simulation was associated with a different level of seismic disaster. Dynamic characteristic, strain response, acceleration response, displacement response, base shear and hysteretic behavior were analyzed. The test results demonstrate that at the end of the loading process, the failure mechanism of SRC frame with irregular section columns is the beam-hinged failure mechanism, which satisfies the seismic code of "strong column-weak beam". With the increase of acceleration peaks, accumulated damage of the frame increases gradually, which induces that the intrinsic frequency decreases whereas the damping ratio increases, and the peaks of acceleration and displacement occur later. During the loading process, torsion deformation appears and the base shear grows fast firstly and then slowly. The hysteretic curves are symmetric and plump, which shows a good capacity of energy dissipation. In summary, SRC frame with irregular section columns can satisfy the seismic requirements of "no collapse under seldom earthquake", which indicates that this structural system is suitable for the construction in the high seismic intensity zone.

Impact of Risk Adjustment with Insurance Claims Data on Cesarean Delivery Rates of Healthcare Organizations in Korea (건강보험 청구명세서 자료를 이용한 제왕절개 분만율 위험도 보정의 효과)

  • Lee, Sang-Il;Seo, Kyung;Do, Young-Mi;Lee, Kwang-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • 제38권2호
    • /
    • pp.132-140
    • /
    • 2005
  • Objectives: To propose a risk-adjustment model from insurance claims data, and analyze the changes in cesarean section rates of healthcare organizations after adjusting for risk distribution. Methods: The study sample included delivery claims data from January to September, 2003. A risk-adjustment model was built using the 1st quarter data, and the 2nd and 3rd quarter data were used for a validation test. Patients' risk factors were adjusted using a logistic regression analysis. The c-statistic and Hosmer-Lemeshow test were used to evaluate the performance of the risk-adjustment model. Crude, predicted and risk-adjusted rates were calculated, and compared to analyze the effects of the adjustment. Results: Nine risk factors (malpresentation, eclampsia, malignancy, multiple pregnancies, problems in the placenta, previous Cesarean section, older mothers, bleeding and diabetes) were included in the final risk-adjustment model, and were found to have statistically significant effects on the mode of delivery. The c-statistic (0.78) and Hosmer-Lemeshow test ($x^2$=0.60, p=0.439) indicated a good model performance. After applying the 2nd and 3rd quarter data to the model, there were no differences in the c-statistic and Hosmer-Lemeshow $x^2$. Also, risk factor adjustment led to changes in the ranking of hospital Cesarean section rates, especially in tertiary and general hospitals. Conclusion: This study showed a model performance, using medical record abstracted data, was comparable to the results of previous studies. Insurance claims data can be used for identifying areas where risk factors should be adjusted. The changes in the ranking of hospital Cesarean section rates implied that crude rates can mislead people and therefore, the risk should be adjusted before the rates are released to the public. The proposed risk-adjustment model can be applied for the fair comparisons of the rates between hospitals.

Study on the Determination of Fire Protection Thickness based on Section Factor (강재의 단면형상에 따른 내화피복두께 산정 연구)

  • 정청운;지남용;권인규
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.139-142
    • /
    • 2003
  • Traditionally, the thickness of fire protection materials of structural elements such as beam and column have been decided by fire test using the predominant steel section of $H-300{\times}300{\times}10{\times}15$ for column and $H-400{\times}200{\times}8{\times}13$ for beam in Korea. But this way of determination of fire protection thickness yields very unduly results. Because the temperature-increment rate of structural steel elements depends mainly on magnitude of their cross-areas. In general, the thicker size of cross-areas for structural elements, the lower temperature shows up. It had already proved that the fire protection thickness only depends on the size of cross-areas and the fire protection method for three-fide or four-side exposed conditions in European countries, the United State of America and so on. To demonstrate there would be differences among various cross-areas for structural elements, we conducted several fire tests with full-scale specimens of beams and columns. For the determination of critical temperature for steel section when the fire resistant performance is needed to be decided, we conducted with a loaded fire test for beam and column, respectively. The small column in 1.0 meter length and beam in 1.5 meter length were used in order to deprive the rational fire protection thickness of structural elements such as beam and column, respectively. After test, we could obtain there were significant temperature lass between higher cross-areas and lower cross-areas. The critical temperature of steel as a criterion is used 538$^{\circ}C$ for column and 593$^{\circ}C$ for beam which is from ASTM E 119 because we don't make provisions as critical temperature by elements. We could consider that the best way of determination of fire protection thickness is using the following multi-regression equation which was deprived from several fire tests using the concept of section factor, FR(column) = 0.17 +5191.49t A/Hp + 40.77t, FR(beam) = 0.25 +6899.31t A/Hp + 32.60t(where, FR means fire resistant time, t means thickness, A means cross-area and Hp means heated parameter).

  • PDF