• Title/Summary/Keyword: Test module

Search Result 1,596, Processing Time 0.029 seconds

Analysis of Comparison Test and Measurement Error Factor for I - V Performance of Photovoltaic Module (PV모듈 발전성능 비교시험과 계측편차 요인 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.70-75
    • /
    • 2009
  • In this experiment, we did sampling 6 kinds of photovoltaic modules and analyzed the discrepancy of measurement results between l laboratory and 4 PV makers to have performance repeatability at Standard Test Condition(STC) condition. From the KIER's results, Korea's standard test laboratory, other laboratory showed -10% measurement variation. The causes came from correction of reference cell, test condition and the state of skill. Form the comparison test, we analyzed the problems. But three PV maker reduced measurement variation, other one PV maker and one test laboratory didn't improve the problems of correction of reference cell, test condition and the state of skill. Also, High Efficiency Module had a big discrepancy of -10.0$\sim$-6.2% among 3 laboratories which have a less than 10msec light pulse duration time. This made low spectrum response speed so the Fill Factor decreased maximum output power under 10msec light pulse duration time

Application of thermoelectric module to DNA amplifying thermal cycle system (유전자(DNA)증폭 온도 사이클 시스템에 열전소자 활용을 위한 연구)

  • Cho, Jae-Seol;Jung, Se-Hun;Nam, Jae-Young;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.210-215
    • /
    • 2004
  • : A DNA analysis system based on fluorescence analysis has to have a DNA amplifying thermal cycle system. DNA amplification is executed by the temperature control. Accuracy of fluorescence analysis is influenced by the temperature control technology. For that reason, the temperature control is core technology in developing the DNA analysis system. Therefore, the objective of this paper is to develop the hardware to apply thermoelectric module to the DNA amplifying thermal cycle system. In order to verify the developed hardware for controlling the temperature of thermoelectric module, a DNA amplifying thermal cycle test was performed. From the test, the developed hardware controlled the temperature of thermoelectric module successfully. Therefore, it is expected that the developed hardware can be applied to the DNA amplifying thermal cycle system.

  • PDF

Development of LCCA Module Using STEP-based LCCA Data Structure (STEP 기반 LCC 분석 데이터구조를 이용한 LCC 분석모듈 개발)

  • Kim, Dong-Hyun;Huang, Meng-Gang;Kim, Bong-Geun;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.803-808
    • /
    • 2007
  • LCCA module enabling to estimate LCC and analyze time-variant reliability index of a plate girder bridge was developed. The developed module was based on the designed data structure following the standardized methodology of ISO/STEP, LCCA module consisted of LCC estimation module, which is composed of six sub modules according to the cost category, and reliability index analysis module, which is composed of time-variant corrosion sub module, time-variant live load sub module, and element reliability analysis sub module, The effectiveness of the developed LCCA module was verified by estimating LCC and analyzing time-variant reliability index of a plate girder bridge on the basis of the constructed test database.

  • PDF

Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler - Part Load Test Results - (멀티버너 보일러용 열교환기 모듈 특성 시험 - 부하별 특성 결과 -)

  • Kim, Jong-Jin;Sung, Choi-Kyu;Ki, Ho-Choong;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1025-1030
    • /
    • 2008
  • We develop heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a heat recovery steam generator (HRSG). This heat recovery system has 4 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 10 bar and tested steam pressure is 4 bar. In order to test these heat exchanger modules, we make a 0.5t/h flue tube boiler (LNG, $40\;Nm^3/h$). The test results of 100% boiler load show that heat transfer rate of 1st module is 49.7 Mcal/h which is 34% of total heat transfer rate and that of 2nd module is 82.6 Mcal/h which is 57% of total heat transfer rate. The reason of higher the heat transfer rate of 2nd module than that of 1st module is that the 2nd heat exchanger module has finned tubes instead of bare tube. The boiler load 50% results show that only 2 heat exchanger modules are needed to extract the heat from the flue gas to water. From this result, it is very important of optimum design of the first finned tube among all water tubes.

  • PDF

A Design and Implementation of a Mobile Test Device Based-on Embedded System (임베디드 기반의 모바일 LCD 모듈 검사장비 설계 및 구현)

  • Kim, Hong-Kyu;Lee, Ki-Wha;Moon, Seung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.523-529
    • /
    • 2008
  • In this paper, we proposed mobile LCD module test device on embedded based, when operating the existing LCD, divide flicker clearly in full frame, and configuration so as to support between other CPU interface, MDDI, SPI, 24Bit RGB interface, etc. that is based on a high-speed CPU. In addition, when demand to test about each pixel of LCD, it is possible to change IP design of H/W, FPGA, but proposed system is application possible without other design changing. Proposed system is made smaller and equipped with battery, so secure with mobility for effective test the LCD/OLED module and it is able to test the pattern by the client program, for example exiting picture, mpeg, simple pattern test and test per pixel, scale, rotation, Odd/Even pixel per video, etc. From now on, if integrating with independent test system and it is configured that is able to mutual communication and test, it is expected to reduce consumption of human resources and improve productivity for LCD module test.

Development of Conformance Test Tools for Terrestrial DMB Broadcast Web Site Services (지상파 DMB 방송웹사이트 서비스 송수신 정합 시험 도구 개발)

  • Kim, Yong-Han;Moon, Su-Han;Chae, Young-Seok
    • Journal of Broadcast Engineering
    • /
    • v.12 no.3
    • /
    • pp.214-221
    • /
    • 2007
  • In this paper, we presents conformance test tools for the broadcast web site (BWS) service which is one of the data services for terrestrial digital multimedia broadcasting (T-DMB). First, the methodology for the conformance test is established for both transmitters and receivers of T-DMB BWS services. The test tools consist of three parts: BWS bitstream analyzer, BWS reference decoder (software) module, and BWS test bitstreams. For testing transmitted BWS bitstreams, we developed the bitstream analyzer. For testing BWS receivers, we developed the reference Ifecoder module and created the test bitstreams. Actually the bitstream analyzer developed in this paper was used for the verification of the test bitstreams. The same test bitstreams are fed to a BWS decoder module under test and the reference decoder module and the results from the two are compared for verification. The test tools can be used for the test of all the protocol and textual/image specifications related to BWS including MOT protocol, HTML, PNG, MNG, JPEG, and Ecma Script.

Study of the ageing of hollow fibers in an industrial module for drinking water production

  • Wang, S.;Wyart, Y.;Perot, J.;Nauleau, F.;Moulin, P.
    • Membrane and Water Treatment
    • /
    • v.4 no.1
    • /
    • pp.53-67
    • /
    • 2013
  • In this study, ageing characteristics of an industrial hollow-fiber membrane module were investigated after 50 months of drinking water production. For this purpose, the industrial module was opened to make 18 smaller modules with hollow-fibers taken from different parts of the industrial module. These modules were probed by the use of a magnetic nanoparticle (NP) challenge test based on magnetic susceptibility (K) measurement of permeate. No magnetic susceptibility was detected in permeate when the challenge test was performed on an intact membrane module, indicating the complete retention of nanoparticles by the membrane. The compromised membrane module can be successfully detected by means of magnetic susceptibility measurement in permeate. So, this study clearly demonstrates that ageing of ultrafiltration membranes can be monitored by measuring the magnetic susceptibility of permeate from an ultrafiltration membrane module. These results showed that the hollow fibers in the center zones of the bundle would age faster than those in the outer zones around the bundle. This result is in agreement with numerical simulation (Daurelle et al. 2011).

Electrical Characteristics Analysis for single-crystalline and multi-crystalline PV module optical character. (단결정과 다결정 태양전지 모듈의 광학적 특성에 따른 전기적 출력 특성 분석)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyunggun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1100-1101
    • /
    • 2008
  • After lamination process, Isc is increased by sheet reflection. This paper presents the electrical output characteristics by back sheet reflection. The experiments was conducted by using single crystalline and multi crystalline PV module. The reflection area of single crystalline PV module is larger than multi one due to the difference of solar cell manufacturing. The experiments show that the increased performance ratio of single crystalline PV module output power is 1.55% rather than that of multi crystalline PV module output power is 1.13%. In addition, it is expected that the output power of single one rather than multi-one is increased by the lower temperature when the PV module is installed outside. The results can be reconsidered by the test material and test process. Back sheet used for humidity prevention makes PV module output power increasing.

  • PDF

A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors

  • Cechet, A.;Altieri, S.;Barani, T.;Cognini, L.;Lorenzi, S.;Magni, A.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1893-1908
    • /
    • 2021
  • In light of the importance of helium production in influencing the behaviour of fast reactor fuels, in this work we present a burn-up module with the objective to calculate the production of helium in both in-pile and out-of-pile conditions tracking the evolution of 23 alpha-decaying actinides. This burn-up module relies on average microscopic cross-section look-up tables generated via SERPENT high-fidelity calculations and involves the solution of the system of Bateman equations for the selected set of actinide nuclides. The results of the burn-up module are verified in terms of evolution of actinide and helium concentrations by comparing them with the high-fidelity ones from SERPENT, considering two representative test cases of (U,Pu)O2 fuel in fast reactor conditions. In addition, a code-to-code comparison is made with the independent state-of-the-art module TUBRNP (implemented in the TRANSURANUS fuel performance code) for the same test cases. The herein presented burn-up module is available in the SCIANTIX code, designed for coupling with fuel performance codes.

Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period (다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가)

  • Jung, Dong-Eun;Yeom, Gyuhwan;Lee, Chanuk;Do, Sung-Lok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.