Browse > Article
http://dx.doi.org/10.1016/j.net.2020.12.001

A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors  

Cechet, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Altieri, S. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Barani, T. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Cognini, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Lorenzi, S. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Magni, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Publication Information
Nuclear Engineering and Technology / v.53, no.6, 2021 , pp. 1893-1908 More about this Journal
Abstract
In light of the importance of helium production in influencing the behaviour of fast reactor fuels, in this work we present a burn-up module with the objective to calculate the production of helium in both in-pile and out-of-pile conditions tracking the evolution of 23 alpha-decaying actinides. This burn-up module relies on average microscopic cross-section look-up tables generated via SERPENT high-fidelity calculations and involves the solution of the system of Bateman equations for the selected set of actinide nuclides. The results of the burn-up module are verified in terms of evolution of actinide and helium concentrations by comparing them with the high-fidelity ones from SERPENT, considering two representative test cases of (U,Pu)O2 fuel in fast reactor conditions. In addition, a code-to-code comparison is made with the independent state-of-the-art module TUBRNP (implemented in the TRANSURANUS fuel performance code) for the same test cases. The herein presented burn-up module is available in the SCIANTIX code, designed for coupling with fuel performance codes.
Keywords
Burn-up module; Oxide nuclear fuels; Fuel performance code; SCIANTIX; Helium production;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L.C. Leal, O.W. Hermann, S.M. Bowman, C.V. Parks, Automatic rapid process for the generation of problem-dependent SAS2H/ORIGEN-S cross-section libraries, Nucl. Technol. 127 (1) (1999) 1-23.   DOI
2 I. Palmer, K.W. Hesketh, P.A. Jackson, A model for predicting the radial power profile in a fuel pin. in: IAEA specialists meeting on water reactor fuel element performance computer modelling, Preston, United Kingdom, 15-19 March 1982, IAEA, 1983.
3 K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, Nucl. Mater. Fission React. (1992) 295-302.
4 K. Lassmann, C. O'Carroll, J. van de Laar, C.T. Walker, The radial distribution of plutonium in high burnup UO2 fuels, J. Nucl. Mater. 208 (3) (1994) 223-231.   DOI
5 A. Soba, A. Denis, Simulation with DIONISIO 1.0 of thermal and mechanical pellet-cladding interaction in nuclear fuel rods, J. Nucl. Mater. 374 (1-2) (2008) 32-43.   DOI
6 A. Schubert, P. Van Uffelen, J. van de Laar, C.T. Walker, W. Haeck, Extension of the TRANSURANUS burn-up model, J. Nucl. Mater. 376 (1) (2008) 1-10.   DOI
7 J.I. Tijero Cavia, A. Schubert, P. Van Uffelen, P. Poeml, S. Bremier, J. Somers, M. Seidl, R. Macian-Juan, The TRANSURANUS burn-up model for thorium fuels under LWR conditions, Nucl. Eng. Des. 326 (2018) 311-319. November 2017.   DOI
8 C.B. Lee, D.H. Kim, J.S. Song, J.G. Bang, Y.H. Jung, RAPID model to predict radial burnup distribution in LWR UO2 fuel, J. Nucl. Mater. 282 (2-3) (2000) 196-204.   DOI
9 S. Lemehov, J. Nakamura, M. Suzuki, PLUTON: a three-group model for the radial distribution of plutonium, burnup, and power profiles in highly irradiated LWR fuel rods, Nucl. Technol. 133 (2) (2001) 153-168.   DOI
10 B.H. Lee, Y.H. Koo, J.Y. Oh, J.S. Cheon, D.S. Sohn, Improvement of fuel performance code COSMOS with recent in-pile data for MOX and UO2 fuels, Nucl. Technol. 157 (1) (2007) 53-64.   DOI
11 P. Van Uffelen, A. Schubert, L. Luzzi, T. Barani, A. Magni, D. Pizzocri, M. Lainet, V. Marelle, B. Michel, B. Boer, S. Lemehov, A. Del Nevo, D7.2 - Incorporation and verification of models and properties in fuel performance codes, INSPYRE Deliverable D7.2 (2020). http://www.eera-jpnm.eu/inspyre/filesharer/documents/Deliverables%20&%20Milestones/Public%20deliverables.
12 D. Pizzocri, T. Barani, L. Luzzi, Coupling of TRANSURANUS with the SCIANTIX fission gas behaviour module, Int. Work. "Towards Nucl. fuel Model. Var. React. types across Eur. (2019).
13 D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. (2020) 152042.
14 EERA-JPNM, INSPYRE: Investigations Supporting MOX fuel licensing in ESNII prototype Reactors [Online]. Available: http://www.eera-jpnm.eu/inspyre/, 2017.
15 J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The SERPENT Monte Carlo code: status, development and applications, in: in: SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, Paris, France, 27-31 October 2013, OECD/NEA, 2014.
16 P. Talou, T. Kawano, P.G. Young, M.B. Chadwick, R.E. MacFarlane, Improved evaluations of neutron-induced reactions on americium isotopes, Nucl. Sci. Eng. 155 (1) (2007) 84-95.   DOI
17 J. Frehaut, A. Bertin, R. Bois, Measurement of the 235U(n,2n) cross section between threshold and 13 MeV, Nucl. Sci. Eng. 74 (1) (1980) 29-33.   DOI
18 P. Botazzoli, Helium Production and Behaviour in LWR Oxide Nuclear Fuels, PhD Thesis, Politecnico di Milano, Italy, 2011.
19 K. Tasaka, J. Katakura, H. Ihara, T. Yoshida, S. Iijima, R. Nakasima, T. Nakagawa, H. Takano, JNDC Nuclear Data Library of Fission Products - Second Version, JAERI 1320, 1990.
20 S. Pearlstein, Analysis of (n,2n) cross sections for medium and heavy mass nuclei, Nucl. Sci. Eng. 23 (3) (1965) 238-250.   DOI
21 H. Ait Abderrahim, P. Baeten, D. De Bruyn, R. Fernandez, MYRRHA - a multipurpose fast spectrum research reactor, Energy Convers. Manag. 63 (2012) 4-10.   DOI
22 M. Pusa, Numerical Methods for Nuclear Fuel Burnup Calculations, 2013.
23 J.E. Kelly, Generation IV International Forum: a decade of progress through international cooperation, Prog. Nucl. Energy 77 (2014) 240-246.   DOI
24 J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, C.T. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345.   DOI
25 P. Van Uffelen, R.J.M. Konings, C. Vitanza, J. Tulenko, Analysis of reactor fuel rod behavior, Handb. Nucl. Eng. (2010) 1519-1627.
26 P. Van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A review of fuel performance modelling, J. Nucl. Mater. 516 (2019) 373-412.   DOI
27 V. Sobolev, Database of thermophysical properties of liquid metal coolants for GEN-IV, SCK⦁ CEN Tech. Report SCKCEN-BLG-1069 16 (12) (2010) 3496-3502.
28 GIF (Generation IV International Forum), Annual Report 2019, OECD/NEA No. 7527, 2019.
29 J.F. Briesmeister, MCNP4C - A General Monte Carlo N Particle Transport Code, Manual LA-13709-M, 2000.
30 D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical Information Center - Energy Research and Development Administration, University of California, Berkeley, 1976.
31 S.M. Bowman, M.D. DeHart, C.V. Parks, Validation of SCALE-4 for burnup credit applications, Nucl. Technol. 110 (1) (1995) 53-70.   DOI
32 A. Alfonsi, C. Rabiti, A.S. Epiney, Y. Wang, J. Cogliati, Phisics toolkit: multi-reactor transmutation analysis utility - MRTAU, in: Int. Conf. PHYSOR 2012: Advances in Reactor Physics, American Nuclear Society, 2012, pp. 2181-2195.
33 S. Hoglund, J. Kristensson, ESSANUF - European Supply of SAfe NUclear Fuel. International conference on WWER fuel performance, modelling and experimental support, Nesebar, Bulgaria, 16-23 September 2017, IAEA, 2017.
34 C. Demaziere, V.H. Sanchez-Espinoza, B. Chanaron, Advanced Numerical Simulation and Modelling for Reactor Safety - Contributions from the CORTEX, HPMC, McSAFE and NURESAFE projects. 9th European Commission Conferences on EURATOM Research and Training in Safety of Reactor Systems and Radioactive Waste Management (FISA 2019 - Euradwaste' 19), Pitesti, Romania, 4-7 June 2019, Euratom, 2019.
35 European Commission, TRANSURANUS Handbook, in: Joint Research Centre Directorate G - Nuclear Safety & Security, "Transuranus Handbook, 2018. Karlsruhe, Germany.
36 M. Herman, A. Trkov, "ENDF-6 formats manual: data formats and procedures for the evaluated nuclear data file ENDF", B-VI ENDF/BVII (Report BNL-90365-2009 Rev.1), Natl. Nucl. Data Center (2009). https://www.oecd-nea.org/dbdata/data/manual-endf/endf102.pdf.
37 A. Soba, A. Denis, L. Romero, E. Villarino, F. Sardella, A high burnup model developed for the DIONISIO code, J. Nucl. Mater. 433 (1-3) (2013) 160-166.   DOI
38 A. Soba, A. Denis, DIONISIO 2.0: new version of the code for simulating a whole nuclear fuel rod under extended irradiation, Nucl. Eng. Des. 292 (2015) 213-221.   DOI
39 P. Botazzoli, L. Luzzi, S. Bremier, A. Schubert, P. Van Uffelen, C.T. Walker, W. Haeck, W. Goll, Extension and validation of the TRANSURANUS burn-up model for helium production in high burn-up LWR fuels, J. Nucl. Mater. 419 (1-3) (2011) 329-338.   DOI
40 E. Federici, A. Courcelle, P. Blanpain, H. Cognon, Helium production and behavior in nuclear oxide fuels during irradiation in LWR, in: in: Proceedings of the 2007 International LWR Fuel Performance Meeting, San Francisco, California, USA, 30 September - 3 October 2007, American Nuclear Society, 2007, pp. 664-673.
41 S.Y. Kurchatov, V.V. Likhanskii, A.A. Sorokin, O.V. Khoruzhii, RTOP-code simulation of the radial distribution of heat release and plutonium isotope accumulation in high burnup oxide fuel, At. Energy 92 (4) (2002) 349-356.   DOI