• Title/Summary/Keyword: Test Temperature

Search Result 10,026, Processing Time 0.039 seconds

The Effect of Thickness of Sprayed Fireproofing on Temperature of Main Bars under Fire Test (화재 시험시 내화 피복재 두께가 주철근의 온도에 미치는 영향)

  • Park Chan Kyu;Lee Seung Hoon;Kim Gyu Dong;Kim Gyu Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.389-392
    • /
    • 2005
  • In this study, the effect of thickness of sprayed fireproofing on temperature of main bars under fire test was investigated for high strength concrete member(column) prevented the spalling. The thicknesses of sprayed fireproofing were 0, 10, 20 and 30mm. Test was carried out according to ISO-KS standard temperature-time curve during 3hrs. Based on temperature results of main bars after 3hrs, it appears that the temperatures of the main coner bar are about 400$^{circ}C$ and 500$^{circ}C$, when the thicknesses of sprayed fireproofing are 5mm and 2mm, respectively.

  • PDF

A Computing Method of a Process Coefficient in Prediction Model of Plate Temperature using Neural Network (신경망을 이용한 판온예측모델내 공정상수 설정 방법)

  • Kim, Tae-Eun;Lee, Haiyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.51-57
    • /
    • 2014
  • This paper presents an algorithmic type computing technique of process coefficient in predicting model of temperature for reheating furnace and also suggests a design method of neural network model to find an adequate value of process coefficient for arbitrary operating conditions including test conditons. The proposed neural network use furnace temperature, line speed and slab information as input variables, and process coefficient is output variable. Reasonable process coefficients can be obtained by an algorithmic procedure proposed in this paper using process data gathered at test conditons. Also, neural network model output equal process coefficient under same input conditions. This means that adquate process coefficients can be found by only computing neural network model without additive test even if operating conditions vary.

Thermal Characteristics of Fire-Protection Foams Exposed to Radiant Heating (복사열에 노출된 소방용 폼 약제의 열적 특성 연구)

  • Kim, H.S.;Hwang, I.J.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1570-1575
    • /
    • 2004
  • In order to evaluate the performance of fire-fighting agents used to protect structures from heat and fire damages, the thermal characteristics of fire-protection foams are experimentally investigated. The current research focuses on the destruction of a fire-fighting foam subjected to heat radiation. A simple repeatable test for fire-protection foams subjected to fire radiation is developed. This test involves foam generation equipment, a fire source for heat generation, repeatable test procedures, and data acquisition techniques. Results of the experimental procedure indicated that each thermocouple within the foam responded in a similar manner and gradually to a temperature of $15^{\circ}C{\sim}20^{\circ}C$. At this point, each trace generally rises to a temperature of approximately $90^{\circ}C$. The temperature gradient in the foam as time passes increases with increased foam expansion ratio. In addition, it is determined that the temperature gradient along the foam for depth decreases with increased foam expansion ratio.

  • PDF

A Study on the Thermal Specific of Operational Spindle System of Machine Tool (공작기계 주축부 운전시 열적 특성에 관한연구.)

  • 임영철;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.498-503
    • /
    • 2002
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design considering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verified the test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirmn approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective mettled in thermal-appropriate design.

  • PDF

Mock-up Test on the Reduction of Hydration Heat of Mass Concrete for Transfer Girder (전이보 매스콘크리트의 수화열 저감에 관한 Mock-up 실험)

  • Yoon Seob;Hwang Yin Seong;Baik Byung Hoon;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.707-710
    • /
    • 2004
  • This paper reported the results of mock-up test on mass concrete for transfer girder using setting time difference of super retarding agent(SRA). According to test results, two mock-up structures were made. Plain concrete without placing layer reached maximum temperature after 24hours since placement and caused surface hydration cracks at top section. However, concrete with placing layer reached maximum temperature after 72hours and surface temperature was higher than center temperature, which did not cause surface crack. After form removing, no crack was observed at side surface of plain concrete, while concrete using SRA at mid section had surface scaling and settling crack. According to coring results, concrete with placing layer had a penetration crack from top section to bottom section. Therefore, the setting time difference method to reduce hydration heat will have difficulty in applying the mass concrete for transfer girder.

  • PDF

The Method of Determining Stress Levels Regarding the Electrical ALT through Optical Temperature Sensor

  • Ryu, Haeng-Soo;Han, Gyu-Hwan;Yoon, Nam-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.184-191
    • /
    • 2008
  • Electrical endurance is the critical characteristic of Magnetic contactors(MCs), which are widely used in such power equipment as elevators, cranes, and factory control rooms in order to close and open control circuits. Testing time, however, is not short in typical cases in which some method of reducing the testing period is required. This study shows the method of determining the stress level of electrical ALT(Accelerated Life Test) through optical temperature sensor and the relationship between 0.05 s and 0.1 s for on-time. The tool used for analyzing the test result is MINITAB. I will propose the method of determining the optimized stress level through optical temperature sensor, which will contribute to minimize the testing time and development period and also raise the product reliability.

A Study on Temperature Characteristics of Induction Motor (유도전동기의 온도 특성 연구)

  • Han, Young-Jae;Kim, Seog-Won;Mok, Jin-Yeong;Lee, Sang-Woo;Choi, Jong-Sun;Kim, Jung-Su
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1487-1489
    • /
    • 2003
  • For this research, we developed the hardware and software of the measurement system for on-line test and evaluation. The software controls the hardware of the mesurement data and acts as interface between users and the system hardware. In this paper, practical experiment is performed to verify temperature characteristics of induction motor for high speed rail. The experimental test carried out new temperature measurement method. Through this test, temperature characteristics of induction motor is verified.

  • PDF

Temperature Distribution of Tungsten Carbide Alloy Steel(WC-Co) for Surface Grinding (초경합금재의 평명연삭에 의한 온도분포)

  • Nam, Joon Woo;Kim, Won Il;Heo, Seoung Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.178-188
    • /
    • 1995
  • A study on the temperature distribution of tungsten carbide alloy steel(WC-Co) in surface grinding was conducted to improve the surface finish and to find optimum grinding conditions which would lead to efficient grinding operation by theoretical finite element method analysis and experimental test of workpiece under various conditions. Based on the comparixion of test results and FEM analysis data, it is concluded that the FEM computer simulation of heat transfer is useful in predicting the temperature distribution of test material that the increase of temperature is more infuleneced by the grinding depth than the grinding speed. And that the grinding energy flux of dey grinding is 4 to 6 time greater than wet grinding regardless of grinding speed and finally that the heat transfer does not take place in depth deeper than 3mm from the grinding surface.

  • PDF

Accelerated Life Test Model for Life Prediction of Piston Assemblies in Hydraulic Pump and Motor (유압펌프 및 모터 피스톤 조립체의 수명예측을 위한 가속실험 모델)

  • Lee Y.B.;Kim H.E.;Yoo Y.C.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.4
    • /
    • pp.14-22
    • /
    • 2005
  • The safety factor of hydraulic piston pumps & motors due to high pressurization, high speedization and low weight/volume realization to enhance the output density shows a tendency to decrease. Therefore more effective test methods are necessary to predict the exact life. The failure of hydraulic pumps & motors operating in high pressure and high speed mainly occurs in piston-shoe assemblies, and the major failure mode is wearout of the shoe surface. The sensitive parameters in the endurance life test are speed, pressure and temperature, and the failure production increases in proportion to the operating time. In this research, the authors propose the combined accelerated life test model using the analysis method of the combined accelerated life test results of piston-shoe assemblies by applying simultaneously high speed, high pressure and high temperature in accordance with variation of speed, pressure and temperature to reduce the life test time.

  • PDF

Evaluation of Physical Properties and Long-term Stability of Expansion Materials for Emergency Repair by Temperature (긴급복구용 팽창재료의 온도에 따른 물리적 특성 및 장기 안전성 평가)

  • Park, Jeongjun;Kim, Kisung;Kang, Hyounhoi;Kim, Ju-Ho;Hong, Gigwon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.79-88
    • /
    • 2018
  • In this study, the changes of the expansion and strength according to the temperature of the emergency repairing expansion material were examined by cup foaming test and uniaxial compressive strength test, and the accelerated compression creep test was carried out to confirm the long term stability. Ramp & Hold test and accelerated compressive creep test were performed to evaluate the creep performance. The short - term creep test was used to determine the initial creep strain of the expanding material. The isothermal method using time - To evaluate the long - term compressive creep performance.