• Title/Summary/Keyword: Test Temperature

Search Result 10,026, Processing Time 0.044 seconds

Failure Analysis of RF SAW Filter by High Temperature Storage Test (고온저장시험에 의한 RF SAW Filter의 고장분석)

  • Kim, Young-Goo;Kim, Tae-Hong;You, Jong-Jun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.140-144
    • /
    • 2003
  • To investigate failure analysis of surface acoustic wave (SAW) filter for radio frequency, high temperature storage test was carried out. The failure criteria were insertion loss at passband and rejection level at stopband. As a result, the insertion loss at passband increase about 4 dB was due to damages of interdigital transducer (IDT). That is caused by poor adhesion between metal electrode(AI) and piezoelectric substrate and defects on a manufacturing process. This result indicates that good adhesion between electrode and ceramic substrate is important factor And also we investigated the demage factors of electrode. Screen possible of saw filter using high temperature storage test(HTOL) in the manufacturing phase be presented.

  • PDF

The Evaluation of Ductile-Brittle Transition of Fracture Toughness by Material Degradation (재료열화에 따른 파괴인성치의 연성-취성 천이거동 평가)

  • Kim, Sang-Pil;Kim, Hyung-Ick;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.579-584
    • /
    • 2001
  • As the huge energy transfer systems like as nuclear power plant and steam power plant are operated for a long time, mechanical properties are changed and ductile-brittle transition temperature is raised by degradation. So it is required to estimate degradation in order to assess the safety, remaining life, and further operation parameters. The sub-sized specimen test method using surveillance specimen was developed for evaluating the integrity of metallic components. In this study, we would like to present the evaluation technique of the ductile-brittle transition temperature by the sub-sired specimen test. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. The tensile test and fracture toughness test were performed. The results of the fracture toughness tests using the sub-sized specimens were compared with the evaluation technique of the ductile-brittle transition temperature.

  • PDF

A Study on the Slip Test of Shear Connector in Fire (전단 연결재의 고온 성능 평가에 관한 연구)

  • Han, Sang-Hoon;Park, Won-Sup;Lee, Choul-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.48-51
    • /
    • 2008
  • Shear connector is the element which resist in the horizontal shear force between steel and concrete of composite members and the stud bolt is often used because of its constructional convenience and serviceability. Although the push-out test is the most common method to evaluate shear slip behaviour, it is suitable for only room temperature conditions. In this study, we investigated about shear force, temperature distribution and slip displacement of shear connector in high temperature through the modified push-out test with electronic furnace invented for steel part heating.

  • PDF

Effect of Temperature on the Fracture Toughness of A516 Gr70 Steel

  • Seok, Chang-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2000
  • Fracture toughness JIC and KIC tests were performed on A516 Gr70 carbon steel plate at the temperature ranging from -$160^{\circ}C$ to $600^{\circ}C$, and test results were analyzed according to ASTM E 813 and ASTM E 399. Unloading compliance J-integral tests were performed on 1TCT specimens. The relation between the $J_{IC}$ value and the test temperature was obtained. It was concluded that the temperature ranging from $-15^{\circ}C$ to $600^{\circ}C$ is the upper shelf region of ductile-brittle transition temperature, and in this temperature range, fracture toughness $J_{IC}$ values decreased with increasing temperature. The ductile brittle transition temperature of the material may be around $-30^{\circ}C$. In the region near $-30^{\circ}C$, the tendency of $J_{IC}$ to decrease with decreasing temperature was significant.

  • PDF

Application of developed DCS to test furnace (국산 개발 DCS의 시험 연소로 적용)

  • 김은기;변승현;이찬주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.840-843
    • /
    • 1997
  • We applied a DCS which was developed in Korea to test furnace. Test furnace is a pilot-scale plant made for finding combustion in firing coal. In this paper, we describe control system which was implemented in test furnace in detail. Finally, we describe the fire box temperature control loop, and show fire box temperature control result during commissioning stage using implemented control system.

A Study on Thermal Ratcheting Structure Test of 316L Test Cylinder (316L 시험원통의 열라체팅 구조시험에 관한 연구)

  • Lee, H.Y.;Kim, J.B.;Koo, G.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.243-249
    • /
    • 2001
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The inelastic deformation of the reactor baffle cylinder can occur due to the moving temperature distribution along the axial direction as the hot free surface moves up and down under the cyclic heat-up and cool-down of reactor operations. The ratchet deformations were measured with the laser displacement sensor and LVDTs after cooling the structural specimen which experiences thermal load up to $550^{\circ}$ and the temperature differences of about $500^{\circ}C$. During structural thermal ratchet test, the temperature distribution of the test cylinder along the axial direction was measured from 28 channels of thermocouples and the temperatures were used for the ratchet analysis. The thermal ratchet deformation analysis was performed with the NONSTA code whose constitutive model is nonlinear combined kinematic and isotropic hardening model and the test results were compared with those of the analysis. Thermal ratchet test was carried out with respect to 9 cycles of thermal loading and the maximum residual displacements were measured to be 1.8mm. It was shown that thermal ratchet load can cause a progressive deformation to the reactor structure. The analysis results with the combined hardening model were in reasonable agreement with those of the tests.

  • PDF

A Study on Evaluation of High Temperature Creep Properties of 9Cr1MoVNb Steel by Small Punch-Creep test (소형펀치-크리프 시험에 의한 9Cr1MoVNb강의 고온 크리프 특성 평가 연구)

  • Yu, Hyo-Sun;Na, Sung-Hoon;Baek, Seung-Se;Kwon, Il-Hyun;Ahn, Byung-Guk;Na, Eui-Gyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.99-104
    • /
    • 2000
  • This paper describes the high temperature creep characteristics for virgin material of 9Cr1MoVNb steel using small punch creep(SP-Creep) test technique which is developing recently. In addition, the several results of SP-Creep test are compared with that of 2.25Cr- 1Mo steel which is widely used as boiler materials and that of conventional uniaxial creep test. The obtained SP-Creep curves show the creep behaviors of three regimes like that obtained from conventional uniaxial creep test, and SP-Creep properties are definitely depended on applied load and test temperature. The correlation of SP-Creep rate and creep rupture life with applied load has been determined like the correlation between creep rate/rupture life and stress in uniaxial creep test, and also is satisfied with Power law. The creep rupture times of newly 9Cr1MoVNb steel are higher than those of 2.25Cr1Mo steel at the same creep temperature and applied loading condition, and the decrease extent of creep rupture life with loads is very lower compared with 2.25Cr1Mo steel.

  • PDF

The Intrinsic Safety Evaluation of Solar Photovoltaic Cell (태양전지셀의 본질안전 방폭성능 평가)

  • Lee, Chun-Ha;Jee, Seung-Wook;Kim, Si-Kuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.49-54
    • /
    • 2011
  • Now the world will regulate the CO2 emission due to environmental issues. For an alternative plan photovoltaic system is watched. So, photovoltaic system is trend of big city and it is mandatory for renovation of construction. Oil & gas filling station existed in city is suitable to found the photovoltaic system. But the general photovoltaic system in oil & gas filling station is difficult to found because it is classified into hazardous area. This paper evaluates intrinsic safety evaluation of solar cell for making basic data to found for the photovoltaic system on hazardous area. The intrinsic safety characteristic is evaluated by short-circuit ignition test using IEC type spark ignition test apparatus and temperature rising test. The result of short-circuit ignition test, propane-air mixture gas is exploded on condition that 4 solar cells(9[V], 90[mA]) are connected serially under insolation 800[W/$m^2$]. So, if a larger solar module will be used at oil & gas filling station than we were tested, it needs explosion proof. As the result of rising temperature test, the temperature rising due to short circuit is not so much, but when the temperature rises due to radiant heat, it demands careful consideration for environmental influence.

Establishment of Low Temperature Environment System Using Polar Environment Performance Test Construction (극지환경성능시험설비를 활용한 저온환경 시스템 구축)

  • Sung, Ki-Young;Han, Seong-Jong;Lee, Jung-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.843-851
    • /
    • 2022
  • This paper was conducted to study the conditions for the manufacture and operation of artificial snow removal and ice-making test facilities so that the test equipment can be tested in a low-temperature environment using the polar environment performance test facility. The polar environment performance test Facility is designed to artificially simulate extreme environments up to -65 ℃, and is a mid-to-large low-temperature environment test facility that can perform performance tests on offshore plant equipment, ships, leisure, and offshore structures. To verify the safety of deck work of ships operating in polar environments, artificial snow removal and artificial ice making devices were manufactured, and we conducted research on various operating environments using these facilities. For the efficient operation of artificial snow and ice making facilities, it is important to continuously supply dry air, and it has been found that installing an additional heater at the tip of the nozzle is effective in preventing freezing.

A study on abrasive wear characteristics of side plate of FRP ship (온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.