• Title/Summary/Keyword: Test Specimen

Search Result 4,133, Processing Time 0.034 seconds

Effect of Anchorage Number on Behavior of Reinforced Concrete Beams Strengthened with Glass Fiber Plates

  • Kaya, Mustafa;Kankal, Zeynel Cagdas
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.415-425
    • /
    • 2015
  • Reinforced concrete beams with insufficient shear reinforcement were strengthened using glass fiber reinforced polymer (GFRP) plates. In the study, the effect of the number of bolts on the load capacity, energy dissipation, and stiffness of reinforced concrete beams were investigated by using anchor bolt of different numbers. Three strengthened with GFRP specimens, one flexural reference specimen designed in accordance to Regulation on Buildings Constructed in Disaster Areas rules, and one shear reinforcement insufficient reference specimen was tested. Anchorage was made on the surfaces of the beams in strengthened specimens using 2, 3 and 4 bolts respectively. All beams were tested under monotonic loads. Results obtained from the tests of strengthened concrete beams were compared with the result of good flexural reference specimen. The beam in which 4 bolts were used in adhering GFRP plates on beam surfaces carried approximately equal loads with the beam named as a flexural reference. The amount of energy dissipated by strengthened DE5 specimen was 96 % of the amount of energy dissipated by DE1 reference specimen. Strengthened DE5 specimen initial stiffness equal to DE1 reference specimen initial stiffness, but strengthened DE5 specimen yield stiffness about 4 % lower than DE1 reference specimen yield stiffness. Also, DE5 specimen exhibited ductile behavior and was fractured due to bending fracture. Upon the increase of the number of anchorages used in a strengthening collapsing manner of test specimens changed and load capacity and ductility thereof increased.

Impact Fracture Behavior of Ceramic Plates Instrumented Long Bar (계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동)

  • Shin, Hyung-Seop;Bae, Young-Jun;Oh, Sang-Yeob;Kim, Chang-Uk;Chang, Soon-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.561-566
    • /
    • 2001
  • A long bar impact test to alumina plates(AD 85 and AD 90) was carried out by using fabricated impact testing apparatus. The apparatus adopting a long bar of 2.1m in length made it possible to measure directly the applied impact force to the specimen during bar impact. The dimension of specimens was $33{\times}33mm$ and thickness was 3.4mm. Confinement of D2=18mm outer diameter and D1=10.5mm inner diameter was used to provide contact pressure to the specimen. Contact pressure of p=100 or 200MPa was applied to specimen before impact test. Damage caused in those cases were compared with the case of without contact pressure. The damage of specimen was different depending upon the pressure level of confinement. The existence of confinement had suppressed the development of radial cracks from the bottom of specimen and reduced the extent of damage as compared with cases without contact pressure(p=0MPa). Because the application of contact pressure to the specimen increased the apparent flexural stiffness of specimen during bar impact, it had produced the change of developed damage in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates.

  • PDF

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

Static and Dynamic Characteristics of AC4C Aluminum Alloy (AC4C 알루미늄 합금의 정적 및 동적 특성)

  • Kwon, Y.G.;Ju, W.K.;Song, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.220-225
    • /
    • 2007
  • The mechanical characteristics of AC4C Aluminum Casting Alloy were investigated by tensile test and impact test. Based on the tensile test' s result, we found that the yield strength of a high speed was about 10% higher than that of a low speed test and the maximum rupture strain mostly occurred in low speed tensile test. The impact energy of curved surface specimen was higher than that of plane surface specimen that can be measured in impact test.

  • PDF

A Study of Edgewise Compression and Flatwise Shear Test to Sandwich Structure (샌드위치구조의 Edgewise압축실험과 Flatwise 전단실험에 대한 연구)

  • 김익태
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.35-41
    • /
    • 1996
  • This paper is aimed to solve local buckling problem that can frequently occur when the high speed ship's hull of sandwich structural type is crushed by rarbour and cargo. Experiment is performed on 36 specimens cut of 4-plates that made of sandwich type(Kevlar-Epoxy, Klegecell foam) and 16-Edgewise compressive test specimen, 16-Flatwise test specimen were tested by A.S.T.M. test method. The result of this study is analyzed and compared in test method and test jig to perorm Edgewise compressive test and Flatwise test.

  • PDF

Specimen Size Effect on Fatigue Properties of Surface-Micromachined Al-3%Ti Thin Films (Al-3%Ti 박막의 피로성질에 대한 시편 크기 영향)

  • Park, Jun-Hyub;Myung, Man-Sik;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1708-1711
    • /
    • 2007
  • This paper presents high cycle fatigue properties of an Al-3%Ti thin film, used in a RF (radio-frequency) MEMS switch for a mobile phone and also describes new test method for obtaining static and dynamic characteristics of thin film and reliability evaluation method on MEMS device with thin film developed by authors. Durability should be ensured for such devices under cycling load. Therefore, with the proposed specimen and test procedure, tensile and fatigue tests were performed to obtain mechanical and fatigue properties. The specimen was made with dimensions of $1000{\mu}m$ long, $1.0{\mu}m$ thickness, and 3 kinds of width, 50, 100 and $150{\mu}m$. High cycle fatigue tests for each width were also performed, from which the fatigue strength coefficient and the fatigue strength exponent were found to be 193MPa and .0.02319 for $50{\mu}m$, 181MPa and -0.02001 for $100{\mu}m$, and 164MPa and -0.01322 for $150{\mu}m$, respectively. We found that the narrower specimen is, the longer fatigue life of Al-3%Ti is and the wider specimen is, the more susceptible to stress level fatigue life of Al-3%Ti was.

  • PDF

Mechanical properties of steel-CFRP composite specimen under uniaxial tension

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.659-677
    • /
    • 2013
  • This paper introduces new specimens of Steel-Carbon Fibre Reinforced Polymer composite developed in accordance with standard test method and definition for mechanical testing of steel (ASTM-A370). The main purpose of this research is to study the behaviour of steel-CFRP composite specimen under uniaxial tension to use it in beams in lieu of traditional steel bar reinforcement. Eighteen specimens were prepared and divided into six groups, depending upon the number of the layers of CFRP. Uniaxial tensile tests were conducted to determine yield strength and ultimate strength of specimens. Test results showed that the stress-strain curve of the composite specimen was bilinear prior to the fracture of CFRP laminate. The tested composite specimens displayed a large difference in strength with remarkable ductility. The ultimate load for Steel-Carbon Fibre Reinforced Polymer composite specimens was found using the model proposed by Wu et al. (2010) and nonlinear FE analysis. The ultimate loads obtained from FE analysis are found to be in good agreement with experimental ones. However, ultimate loads obtained applying Wu model are significantly different from experimental/FE ones. This suggested modification of Wu model. Modified Wu's model which gives a better estimate for the ultimate load of Steel-Carbon Fibre Reinforced Polymer (SCFRP) composite specimen is presented in this paper.

A Study on Elevated Temperature Fatigue Crack Growth Using Round Bar Specimen with a Surface Crack (표면균열을 갖는 원형봉재 시편을 이용한 고온 피로균열성장 연구)

  • So, Tae-Won;Yun, Gi-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3415-3423
    • /
    • 1996
  • The compact tension specimen geometry has been widely used for measuring fatigue crack growth rates at elevated temperature when the fatigue load is under tension/tension condition. However, most of the elevated temperature components which have significant crack growth life experience fatigue load under tension/compression conditions. Thus test techniques are required since the compact tension specimen cannot be used for tension/compression loading. In this paper, a simplified test procedure for measureing fatigue crack growth rates is proposed, which employs a round bar specimen with a small surface crack. Fatigue crack growth rates under tension/ tension loading conditions at elevated temperature were measured according to the proposed procedure and compared with those previously measured by C/(T) specimens. Since both the measured crack growth rates were comparable, the fatigue crack growth rates under tension/ compression load can be reliably measured by the proposed procedure. For monitoring crack depth. DC electric potential method is employed and an optimal probe location and current input conditions were proposed.

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

The damping efficiency of vortex-induced vibration by tuned-mass damper of a tower-supported steel stack

  • Homma, Shin;Maeda, Junji;Hanada, Naoya
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.333-347
    • /
    • 2009
  • Many tower-supported steel stacks have been constructed in Japan, primarily for economic reasons. However the dynamic behavior of these stacks under a strong wind is not well known and the wind load design standard for this type of a stack has not yet been formulated. In light of this situation, we carried out wind response observation of an operating tower-supported steel stack with and without a tuned-mass damper. The observation revealed the performance of the tuned-mass damper installed on the stack in order to control the wind-induced vibration. Based on the observed data, we performed a wind tunnel test of a specimen of the stack. In this paper we report the results of the wind tunnel test and some comparisons with the results of observation. Our findings are as follows: 1) the tuned-mass damper installed on the specimen in the wind tunnel test worked as well as the one on the observed stack, 2) the amplitude of the vortex-induced vibration of the specimen corresponded approximately to that of the observed stack, and 3) correlation between Scruton number and reduced amplitude, y/d, (y is amplitude, d is diameter) was confirmed by both the wind tunnel test and the observed results.