• Title/Summary/Keyword: Test Installation

Search Result 1,493, Processing Time 0.032 seconds

Efficiency of Geothermal Energy Generation Assessed from Measurements of Deep Depth Geothermal Conductivity (고심도 지중열전도도에 의한 지열 응용의 효율성)

  • Cho, Heuy-Nam;Lee, Dal-Heui;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.233-241
    • /
    • 2012
  • The objectives of this study were to test geothermal conductivity (k), water velocity, water quantity, and pipe pressure from a ground heat exchanger in the field, and then to analyze these data in relation to the effectiveness and economical efficiency for application of geothermal energy. After installation of the apparatus required for field tests, geothermal conductivity values were obtained from three different cases (second, third, and fourth). The k values of the second case (506 m depth) and third case (151 m depth) are approximately 2.9 and 2.8, respectively. The k value of the fourth case (506 m depth, double pipe) is 2.5, which is similar to the second and third cases. This result indicates that hole depth is a critical factor for geothermal applications. Analysis of the field data (k, water velocity, water quantity, and pipe pressure) reveals that a single geothermal system at 506 m depth is more economically efficient than three geothermal systems at depths intervals of 151 m. Although it is more expensive to install a geothermal system at 506 m depth than at 151 m depth, test results showed that the geothermal system of the fourth case (506 m, double pipe) is more economically efficient than the system at 151 m depth. Considering the optional cost of maintenance, which is a non-operational expense, the geothermal system of the fourth case is economically efficient. Large cities and areas with high land prices should make greater use of geothermal energy.

A Study on the Expansion Joint of Concrete Lining and Duct in a Tunnel (터널 콘크리트 라이닝 및 공동구 신축이음 설치방안에 관한 연구)

  • Son, Moorak;Park, Yangheum;Park, Yunjae;Kim, Jaegyoun;Yoon, Jongcheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.39-50
    • /
    • 2015
  • The installation of the expansion joints in a tunnel concrete lining and duct would minimize the cracking at the location of structural shape and stiffness change, differential settlement, big temperature change, and so on. However, it is difficult to determine the required spacing of the expansion joint in a tunnel concrete lining and duct quantitatively because the spacing is influenced by temperature change, structure construction condition, ground-structure interaction, and etc. Nevertheless, a highway specification (Korea Expressway Corporation, 2012) or a road design manual (Ministry of Land, Transport and Maritime Affairs, 2010) specifies that the expansion joint spacing in a tunnel concrete lining should be installed uniformly smaller than 25 m from the tunnel portals to 50 m inside of a tunnel and elsewhre 20-60 m in a tunnel (because there is no specifcation for a duct it is assumed that a duct follows the specfication of lining). This specification results in several construction and economic problems in relation with a tunnel construction. Accordingly, in order to minimize the problems, this study analyzed both domestic and foreign design standards and specifications. In addition, field test, theoretical and numerical analyses were carried out in relation to the expansion joint in a tunnel lining and duct. The purpose of this study is to reestabilish a criterion for installing the expansion joint in a tunnel concrete lining and duct.

Experimental Verification for the Control Performance of a TLD by Using Real-Time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법을 이용한 TLD 제어성능의 실험적 검증)

  • Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Chun, Lan;Woo, Sung-Sik;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.419-427
    • /
    • 2006
  • In this paper, an experimental real-time hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. The control force acting between their interface is measured with a shear-type load-cell which is mounted on the shaking table. The shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

Experimental Behavior Characteristics of 2×2 Group Pile under Lateral Loads (수평하중을 받는 2×2 무리말뚝의 실험적 거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.5-16
    • /
    • 2018
  • In this study, the large scale laboratory model tests were executed to investigate the lateral resistance characteristics of $2{\times}2$ group pile under lateral loads according to the array method and installation angle of piles. The effect on the behavior of $2{\times}2$ group pile was also investigated through model tests varying the pile diameter and length, distance to pile top from the ground surface, center-to-center (CTC) length and surcharge etc. From these test results, it was found that the lateral resistance of $2{\times}2$ group pile of which piles were constructed slantly in both directions was greater than that of group pile of which piles were constructed vertically. And as a result of parameter tests on the lateral resistance of $2{\times}2$ group pile, it was found that the most important parameter was the pile length. As the embedment depth ratio (L/D) increased to 36.5 from 26.5, the lateral resistance increased 3~4 times or more. But the center-to-center (CTC) length, distance to pile top from the ground surface and surcharge did not affect much on the lateral resistance of group pile.

A Study on the Flexural Capacity of Reinforced Timber Beams with the Inserting Method of CFRP Plates (탄소섬유판 삽입공법으로 보강된 목재보 휨강도에 관한 연구)

  • Kwon, Ki-Hyuk;Yu, Hye-Ran;Lee, Jin-Hyuk;Choi, Min-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • When historical or cultural buildings need to be repaired or reinforced, the changes of original features should be minimized, and the strengths of structures should be improved. Among the existing methods to reinforce historical wood structures, the carbon fiber reinforcement polymer (CFRP) installation method is one of the best ones to achieve the afore-mentioned requirements. Therefore, this study aims at investigating the reinforcing effects and failure modes of timber beams reinforced with the inserted CFRP, a part of roof trusses in modern wood structures, and at providing the fundamental test data to estimate the CFRP rein-forced timber beam in the application of this reinforcing method. The primary parameters in this study were the layout and amount of CFRP. It was observed that, when $0.3{\sim}0.7%$ of CFRP were installed, the strengths of reinforced timber beams increased up to 173% compared to its original strength, but their strengthening effects were heavily influenced by the characteristics of timber such as burls. In order to improve the applicability of this strengthening method, fundamental understandings on the characteristics of wood would be necessary, and there would be in need of researches on the non-destructive test for wood structures as well.

A Study on the Construction Performance of Curtain Wall Systems Using Fire-Resistant & Light-Weight Inorganic Composite Foam Board (내화성 경량 무기 발포보드를 이용한 커튼월 시스템의 시공성능에 관한 연구)

  • Koo, Young-Ah;Kim, Seong-Eun;Oh, Chang-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • This study had the goal of analyzing the economic feasibility and constructability of a fire resistant curtain wall system using Light-weight Inorganic Composite Foam Board(LI-CFB). LI-CFBs, new materials with excellent fire resistance are being developed for use as the back panel of curtain wall and their fire resistance has already been analyzed through actual tests in earlier studies. In this study, a mock-up test involving the installation of the fire resistant curtain wall system on an actual building was conducted, and the system was compared with a common curtain wall system. This system is applied in the same way as a common curtain wall system. But the cutting LI-CFBs, which are brought from a factory, are used in the system and attached on the frame (mullion and transom). Even though the system requires more working time than the existing system, the LI-CFBs back panels are easy to cut and do not produce dust. Also, the panels are able to be assured the quality by checking damaged parts easily. Besides having a high level of fire resistance, the system's economic feasibility and constructability meets or exceeds those of the existing system.

Experimental Study of the Wireless Communication System by Surface Wave Communication through Confined Spaces on Vessels (선박 밀폐 공간 무선통신 구현을 위한 표면파 통신의 선박 활용연구)

  • Kong, Jin-Woo;Song, Suk-Gun;Kim, Hak-Sun;Kim, Bu-Young;Shim, Woo-Seong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.366-371
    • /
    • 2021
  • This study suggests surface wave communication, which uses a metal surface as a medium, to provide wireless communication in the extreme environment due to surrounding metal materials on vessels. The test was conducted on a G/T 265 tons tug boat to confirm the possibility of surface wave communication between a bridge and each designated space in the ship. As a result, the transmission speed was 13Mbps on average. In a test case of the bridge via the engine room, the transmission speed was 4.3Mbps on engine running and 1.2Mbps on sailing. It overcame this by partially changing the equipment installation location. Surface wave communication in bow storage, a fully enclosed space, had 8Mbps better transmission speed than wireless communication; this confirmed the superiority of surface wave communication in confined spaces on a vessel. Additional surface wave generators were designed and applied to resolve the paint issue. It is expected to use surface wave communication to implement the new wireless solution for Maritime-IoT system on vessels.

A Study on the Corrosion Prevention of the Integral Series Generator for Military Vehicles (군용차량용 엔진일체형 직렬 발전기 부식 방지에 관한 연구)

  • Kang, Tae-Woo;Kim, Seong-Gon;Shin, Cheol-Ho;Lee, Kye-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.74-79
    • /
    • 2019
  • The military vehicle produces electric power through an engine-integrated serial hybrid generator that is connected to the engine and does not have a separate generator installation space. However, depending on the mechanical characteristics of the connection between the generator and the engine, iron oxide for internal rusting and lubrication grew scattered. The iron oxide is adhered to the starter to deteriorate the starting performance, and there is a problem that the noise of the leg due to wear of the gear is increased. To solve this problem, the connection spline material and the surface treatment of the engine were improved and the shape was changed to a grease sealing type to prevent the generation of iron oxide inside. As the shape of the generator connector composing the shafting system was changed, the integrity of the structure was confirmed through the torsional endurance test. In addition, through the actual vehicle load test, it was verified that no corrosion occurred during the target life span without internal corrosion. It was confirmed that the anti-scattering structure of the grease effectively suppresses the generation of iron oxide, thereby reducing the noise generated from the generator. In this paper, we propose a fundamental solution to the degradation of the starter and the noise generation by preventing the back corrosion caused by the serial hybrid generator installed between the engine and the transmission.

A Study on Improvement of Storage Safety through Quality improvement of Torpedo Propulsion Battery (어뢰 추진전지 품질개선을 통한 저장안정성 향상에 관한 연구)

  • Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.291-298
    • /
    • 2019
  • We describe the improvement of insulation performance and the prevention of electrolyte leakage in a single cell in order to prevent the fuming phenomenon caused by leakage of electrolyte in a lithium secondary battery in a submerged weapon (torpedo) operated in Korea. A torpedo using lithium secondary battery as a main power source (propulsion battery) can induce the heat and fuming phenomenon, which makes it inconvenient for naval equipment operation in Korea. In the simulation test, the electrolyte of some battery cells leaked in the battery pack unit, leading to a short circuit between the main power circuit and the terminal tab of the high voltage part. We analyzed the characteristics and mechanism of the lithium secondary battery during this heat generation and fuming phenomenon. In order to prevent leakage of the electrolyte in the lithium secondary battery, the design was improved via fundamental (terminal tap enhancement) and complementary (insulation block selection and installation) measures. Comparison of the performance test before and after the improvement showed that the tensile strength of the tap terminal was improved about 2 times and the withstand voltage characteristic was improved. The application of quality improvement measures resulted in no fuming even after more than 3 years of field operation. This result is expected to improve the operation and storage stability of the torpedo propulsion cell.

Evaluation of Suction Installation for the Circular Pipe into Low-water Sandy Ground via Model Test (모형실험을 활용한 저수심 사질토 지반에서 원형강관 설치 석션압 평가)

  • Xin, Zhen-Hua;Kim, Jae-Hyun;Lee, Ju-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, a circular pipe can be installed by suction pressure for construction on soft ground with a low-water level. A series of laboratory-scale model tests were conducted in sandy ground to comprehend the suction pressure of the circular pipe in low-water levels. For repeated tests on saturated sandy soil, a container was mounted with three vibration generators on the floor. A repetitive vibration was applied using the vibration system for ground compaction. In the model tests, different diameters and thicknesses on saturated sandy soil with a water depth were considered. The result showed that the suction pressure increased with increasing penetration depth of the circular pipe. Moreover, the suction pressure required to penetrate the pipe decreased with increasing diameter. In the low-water level, the total suction pressure measured at the top lid increased because additional suction pressure is required to lift the water column. On the other hand, this led to a decrease in suction pressure to penetrate the circular pipe because the weight of the water column is applied as a dead load. Therefore, it is necessary to consider the water level to design the required suction pressure accurately.