• Title/Summary/Keyword: Terrestrial reference system

Search Result 34, Processing Time 0.029 seconds

Improved National Datum Transformation Parameters of South Korea (국가좌표계 변환요소의 개선)

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.95-101
    • /
    • 1998
  • In this paper, the historical coordinates data of origin SUWON are reviewed and determination procedures are explained with the three dimensional geocentric coordinates of ITRF94 that is determined using VLBI observations. Also three translation parameters are calculated on the origin point. The national transformation parameters between the Korean geodetic system and Korean Terrestrial Reference Frame 1994(KTRF94) system, are determined using least square methods with weigted parameter constraints. The results of transformation show that one set of parameters are applicable to fixing of a position for GPS relative positioning processing and to adjusting of a network for three dimensional geocentric coordinates(KTRF94) computing.

  • PDF

Analyses of Coordinates Differences in GRS80 Map Transformation (GRS80타원체로의 지도변환과 좌표변화량 분석)

  • 이영진;차득기;김상연
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.265-272
    • /
    • 1999
  • The map coordinate systems of Korea, based on the Bessel 1841 ellipsoid with Tokyo Datum, applied in digital mapping. So, the new geocentric system have some coordinate differences compared to GRS80 ellipsoid with the International Terrestrial Reference Frame(ITRF). Therefore, map transition procedures are needed to establish for the new coordinate system. In this paper, characteristics and tendencies about coordinate differences and map tiles systems are investigated and modules for the map coordinate transformations between two systems are developed and simulated.

  • PDF

Evaluation of Mobile Device Based Indoor Navigation System by Using Ground Truth Information from Terrestrial LiDAR

  • Wang, Ying Hsuan;Lee, Ji Sang;Kim, Sang Kyun;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.395-401
    • /
    • 2018
  • Recently, most of mobile devices are equipped with GNSS (Global Navigation Satellite System). When the GNSS signal is available, it is easy to obtain position information. However, GNSS is not suitable solution for indoor localization, since the signals are normally not reachable inside buildings. A wide varieties of technology have been developed as a solution for indoor localization such as Wi-Fi, beacons, and inertial sensor. With the increased sensor combinations in mobile devices, mobile devices also became feasible to provide a solution, which based on PDR (Pedestrian Dead Reckoning) method. In this study, we utilized the combination of three sensors equipped in mobile devices including accelerometer, digital compass, and gyroscope and applied three representative PDR methods. The proposed methods are done in three stages; step detection, step length estimation, and heading determination and the final indoor localization result was evaluated with terrestrial LiDAR (Light Detection And Ranging) data obtained in the same test site. By using terrestrial LiDAR data as reference ground truth for PDR in two differently designed experiments, the inaccuracy of PDR methods that could not be found by existing evaluation method could be revealed. The firstexperiment included extreme direction change and combined with similar pace size. Second experiment included smooth direction change and irregular step length. In using existing evaluation method which only checks traveled distance, The results of two experiments showed the mean percentage error of traveled distance estimation resulted from three different algorithms ranging from 0.028 % to 2.825% in the first experiment and 0.035% to 2.282% in second experiment, which makes it to be seen accurately estimated. However, by using the evaluation method utilizing terrestrial LiDAR data, the performance of PDR methods emerged to be inaccurate. In the firstexperiment, the RMSEs (Root Mean Square Errors) of x direction and y direction were 0.48 m and 0.41 m with combination of the best available algorithm. However, the RMSEs of x direction and y direction were 1.29 m and 3.13 m in the second experiment. The new evaluation result reveals that the PDR methods were not effective enough to find out exact pedestrian position information opposed to the result from existing evaluation method.

TPEG based RFID application service for terrestrial-DMB (지상파DMB를 위한 TPEG 기반 RFID 응용서비스)

  • Kim Hyun-Gon;Jeong Yong-Ho;Ahn Chung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.14-24
    • /
    • 2006
  • The terrestrial-DMB (T-DMB) provides one-way broadcasting service in intial phase and two-way interactive data services through a return channel of mobile communications network are commercialized recently. The possible evolution of the T-DMB will be fully convergence between the T-DMB and other communication services such as telematics, RFID and so on. From this evolution point of view, a framework should be defined for supporting telematics and RFID applications on T-BMB platform. In this paper, we propose an integrated service model that could support RFID application services on the interactive T-DMB. To realize the model, we design a service scenario, a network reference model, functionalities of each entity, a data transmission mechanism messages, and coding rules. The service model could allow users to support the identical RFID application services over the T-DMB network even if T-DMB terminal doesn't have RFID reader capability. In addition, in the case for providing the interactive TTI(Traffic and Travel Information)service, users could utilize the current location based RFID application service using by the TPEG-Location application that forms the basis of user location referencing. The messages structure is designed by following TPEG standardization

Development of an urban forest management system based on information of topography, soil and forest type (지형, 토양 및 임상정보에 기초한 도시림 관리시스템 개발)

  • Lee, Woo-Kyun;Son, Yo-Whan;Song, Chul-Chul;Chung, Kee-Hyun;Kim, Yoon-Kyoung;Ryu, Soung-Ryoul;Kim, Hyun-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.3
    • /
    • pp.61-76
    • /
    • 1999
  • For the effective management of urban forest, a variety of informations on urban forest needs to be accurately measured and effectively used in decision-making processes. This study aims at developing an urban forest management system with reference to GIS and making it possible to effectively manage urban forests. A detailed forest type map were constructed with the help of aerial photograph and terrestrial inventory. A geographical map in terms of slope, aspect and altitude were also prepared by Digital Elevation Model(DEM). A soil type map containing chemical characteristics were also made through soil analysis. These thematic maps which contain informations on forest type, geography and soil were digitalized with reference to GIS, and an urban forest management system of user interface were developed. With the help of this urban forest management system, various spatial and attribute informations which need for urban forest management could be easily used in decision-making processes in relation to urban forest.

  • PDF

The Land Cover Change Detection of an Urban Area from Aerial Photos and KOMPSAT EOC Satellite Imagery (항공사진과 KOMPSAT EOC 위성영상으로부터 도시지역의 토지피복 변화 검출)

  • 조창환;배상우;이성순;이진덕
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.177-182
    • /
    • 2004
  • This study presents the application of aerial photographs and KOMPSAT-1 Electro-Optical Camera(EOC) imagery in detecting the change of an urban area that has been rapidly growing. For the study, we used multi-time images which were acquired by two different sensors. For all of the images, the coordinate reference system and scale were first made identical through the 1st and 2nd geometric corrections and then image resampling were carried out to spatial resolution of 7m to detect changes under the same conditions. The Image Differencing was employed as a change detection technique. It was confirmed to be able to detect the changes of terrestrial surface like building, structure and road features from aerial photos and KOMPSAT EOC images with single band. The changes could be detected to some extent with the images acquired from different kinds of sensors as well as the same kinds of sensors.

  • PDF

Development of Precise Point Positioning Method Using Global Positioning System Measurements

  • Choi, Byung-Kyu;Back, Jeong-Ho;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • Precise point positioning (PPP) is increasingly used in several parts such as monitoring of crustal movement and maintaining an international terrestrial reference frame using global positioning system (GPS) measurements. An accuracy of PPP data processing has been increased due to the use of the more precise satellite orbit/clock products. In this study we developed PPP algorithm that utilizes data collected by a GPS receiver. The measurement error modelling including the tropospheric error and the tidal model in data processing was considered to improve the positioning accuracy. The extended Kalman filter has been also employed to estimate the state parameters such as positioning information and float ambiguities. For the verification, we compared our results to other of International GNSS Service analysis center. As a result, the mean errors of the estimated position on the East-West, North-South and Up-Down direction for the five days were 0.9 cm, 0.32 cm, and 1.14 cm in 95% confidence level.

The GRS80 Gravimetric Geoid from GEM9 Potential Coefficients and Terrestrial Gravity Anomalies in the South Korea Region (GEM9 위성자료와 지상자료의 조합에 의한 남한지역의 GRS80 중력지오이드)

  • Cho, Kyu Jon;Lee, Young Jin;Cho, Bong Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.141-149
    • /
    • 1993
  • The gravimetric geoid of the South Korea Region was computed on Geodetic Reference System 1980(GRS80) using a combination of satellite-derived potential coefficients and terrestrial gravaty data. $10^{\prime}{\times}10^{\prime}$ mean gravity anomalies were obtained from surface gravity data for the outer zones, $1^{\circ}{\times}1^{\circ}$ equal area mean anomalies were used for the inner zones, and point gravity anomalies were used for the innermost zones in the Stokes integration. The GRS80 potential coefficients were obtained from modification of GEM9 data and Integration was extended over a spherical cap of $30^{\circ}$ from the integration area. The results of a free-air geoid show that the systematic mean difference of approximately 2~3m in comparison of OSU89B model.

  • PDF

Estimation of Sejong VLBI IVP Point Using Coordinates of Reflective Targets with Their Measurement Errors (반사타겟 좌표 및 오차정보를 이용한 세종 VLBI IVP 위치계산)

  • Hong, Chang-Ki;Bae, Tae-Suk;Yi, Sangoh
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.717-723
    • /
    • 2020
  • Determination of local tie vectors between the space geodetic techniques such as VLBI (Very Long Baseline Interferometer), SLR (Satellite Laser Ranging), DORIS (Doppler Orbit determination and Radiopositioning Integrated on Satellite), GNSS (Global Navigation Satellite System) is essential for combination of ITRF (International Terrestrial Reference Frame). Therefore, it is required to compute IVP (Invariant Point) position of each space geodetic technique with high accuracy. In this study, we have computed Sejong VLBI IVP position by using updated mathematical model for adjustment computation so that the improvement on efficiency and reliability in computation are obtained. The measurements used for this study are the coordinates of reflective targets on the VLBI antenna and their accuracies are set to 1.5 mm for each component. The results show that the position of VLBI IVP together with its standard deviation is successfully estimated when they are compared with those of the results from previous study. However, it is notable that additional terrestrial surveying should be performed so that realistic measurement errors are incorporated in the adjustment computation process.

Development of the Simulation Tool to Predict a Coverage of the R-Mode System (지상파 통합항법 서비스의 성능예측 시뮬레이션 툴 개발)

  • Son, Pyo-Woong;Han, Younghoon;Lee, Sangheon;Park, Sanghyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.429-436
    • /
    • 2019
  • The eLoran system is considered the best alternative because the vulnerability of satellite navigation systems cannot be resolved as perfect. Thus, South Korea is in the process of establishing a testbed of the eLoran system in the West Sea. To provide resilient navigation services to all waters, additional eLoran transmitters are required. However, it is difficult to establish eLoran transmitters because of various practical reasons. Instead, the positioning with NDGNSS/AIS source can expand the coverage and its algorithm with applying continuous waves is under development. Using the already operating NDGNSS reference station and the AIS base station, it is possible to operate the navigation system with higher accuracy than before. Thus, it is crucial to predict the performance when each system is integrated. In this paper, we have developed a simulation tool that can predict the performance of terrestrial integrated navigation system using the eLoran system, maritime NDGNSS station and the AIS station. The esitmated phase error of the received signal is calculated with the Cramer-Rao Lower Bound factoring the transmission power and the atmospheric noise according to the transmission frequency distributed by the ITU. Additionally, the simulation results are more accurate by estimating the annual mean atmospheric noise of the 300 kHz signal through the DGPS signal information collected from the maritime NDGNSS station. This approach can further increase the reliability of simulation results.