• Title/Summary/Keyword: Terrestrial organisms

Search Result 37, Processing Time 0.022 seconds

ENVIRONMENTAL RISK ASSESSMENT OF CHEMICALS - INDUSTRY APPROACH

  • Jung, Keumhee
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2001.05a
    • /
    • pp.107-113
    • /
    • 2001
  • Consumer Product compounds are used in homes and disposed in wastewater where they typically receive waste treatment. After treatment, sludge and effluent are released to the environment resulting in the potential exposure of terrestrial and aquatic organisms to these compounds. To ensure the environmental safety of these compounds, the environmental risk posed by chemicals released into the environment must be assessed. A reasonable, consistent and cost-effective method to conduct environmental risk assessments and to prioritize testing of these chemicals is needed which addresses risk to organisms residing in the terrestrial and aquatic compartments of the environment. This paper provides a fundamental understanding of the technical basis of environmental risk assessment using the major surfactant(i.e., LAS) used in the laundry detergent industry worldwide as a case study.

  • PDF

Feeding Habit of Rhynchocypris kumgangensis (Cyprinidae) from the Hongcheon River, Korea (홍천강 상류에 서식하는 금강모치, Rhynchocypris kumgangensis (Cyprinidae)의 식성)

  • Choi Jae-Seok;Lee Kwang-Yeol;Jang Young-Su;Park Jung-Ho;Kwon Oh-Kil
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.29-37
    • /
    • 2006
  • We investigated the feeding habits of Rhynchocypris kumgangensis in Hongcheon River of Saenggokri, Seoseokmyeon, Hongcheongun, Gangwon-do, Korea from April 2002 to March 2003. The fish is korean endemic species upper streams in Korea. It was asscertained that R. kumgangensis is a carnivore and consumes mainly Ephemeroptera, Diptera, Terrestrial insects and Trichoptera. The most important prey was chironomids: Chironomus sp. Their feeding habits changed according to growth. Small fish fed mainly on small prey organisms such as Diptera, while larger fish fed much more on Ephemeroptera and Terrestrial insects. There were also seasonal changes in the relative proportion of their food items.

Effect of Growth Conditions on the Biomass and Lipid Production of Euglena gracilis Cells Raised in Mixotrophic Culture (Mixotrophic 배양조건에 따른 Euglena gracilis의 성장과 지질에 미치는 영향)

  • Jeong, U-Cheol;Choi, Jong-Kuk;Kang, Chang-Min;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.30-37
    • /
    • 2016
  • Microalgae are functional foods because they contain special anti-aging inhibitors and other functional components, such as ecosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and omega-3 polyunsaturated fatty acids. Many of these functional dietary components are absent in animals and terrestrial plants. Thus, microalgae are widely utilized in human functional foods and in the feed provided to farmed fish and terrestrial livestock. Many marine organisms consume microalgae, often because they are in an appropriate portion of the cell size spectrum, but also because of their nutritional content. The nutritional requirements of marine organisms differ from those of terrestrial animals. After hatching, marine animals need small live forage species that have high omega-3 polyunsaturated fatty acid contents, including EPA and DHA. Euglena cells have both plant and animal characteristics; they are motile, elliptical in shape, 15-500 μm in diameter, and have a valuable nutritional content. Mixotrophic cell cultivation provided the best growth rates and nutritional content. Diverse carbon (fructose, lactose, glucose, maltose and sucrose) and nitrogen (tryptone, peptone, yeast extract, urea and sodium glutamate) supported the growth of microalgae with high lipid contents. We found that the best carbon and nitrogen sources for the production of high quality Euglena cells were glucose (10 g L–1) and sodium glutamate (1.0 g L–1), respectively.

Initial Risk Assessment of Benzoyl peroxide in Environment (Benzoyl peroxide의 환경에서의 초기 위해성 평가)

  • Kim Mi Kyoung;Bae Heekyung;Kim Su-Hyon;Song Sanghwan;Koo Hyunju;Park Kwangsik;Lee Moon-Soon;Jeon Sung-Hwan;Na Jin-Gyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,371 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. In this study, Quantitative Structure-Activity Relationships (QSAR) are used for getting adequate information on the physical -chemical properties of this chemical. And hydrolysis in water, acute toxicity to aquatic and terrestrial organisms for benzoyl peroxide were studied. The physical -chemical properties of benzoyl peroxide were estimated as followed; vapor pressure=0.00929 Pa, Log $K_{ow}$ = 3.43, Henry's Law constant=3.54${\times}$10$^{-6}$ atm-㎥/mole at $25^{\circ}C$, the half-life of photodegradation=3 days and bioconcentration factor (BCF)=92. Hydrolysis half-life of benzoyl peroxide in water was 5.2 hr at pH 7 at $25^{\circ}C$ and according to the structure of this substance hydrolysis product was expected to benzoic acid. Benzoyl peroxide has toxic effects on the aquatic organisms. 72 hr-Er $C_{50}$ (growth rate) for algae was 0.44 mg/1.,48 hr-E $C_{50}$ for daphnia was 0.07mg/L and the 96hr-L $C_{50}$ of acute toxicity to fish was 0.24mg/L. Acute toxicity to terrestrial organisms (earth worm) of benzoyl peroxide was low (14 day-L $C_{50}$ = > 1,000 mg/kg). Although benzoyl peroxide is high toxic to aquatic organisms, the substance if not bioaccumulated because of the rapid removal by hydrolysis (half-life=5.2 hr at pH 7 at $25^{\circ}C$) and biodegradation (83% by BOD after 21 days). The toxicity observed is assumed to be due to benzoyl peroxide rather than benzoic acid, which shows much lower toxicity to aquatic organisms. One can assume that effects occur before hydrolysis takes place. From the acute toxicity value of algae, daphnia and fish, an assessment factor of 100 was used to determine the predicted no effect concentration (PNEC). The PNEC was calculated to be 0.7$\mu\textrm{g}$/L based on the 48 hr-E $C_{50}$ daphnia (0.07 mg/L). The substance shows high acute toxicity to aquatic organisms and some information indicates wide-dispersive ore of this substance. So this substance is, a candidate for further work, even if it hydrolysis rapidly and has a low bioaccumulation potential. This could lead to local concern for the aquatic environment and therefore environmental exposure assessment is recommended.

A DEEPLY BRANCHED NOVEL PHYLOTYPE FOUND IN PADDY SOIL

  • Kim, Hong-Ik;Kazunori Nakamura;Hiroshi Oyaizu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.128-134
    • /
    • 2000
  • In the course of flora analysis of soil Archaea, we found very strange 16S rDNA clones, which could possibly constitute a sister clade from known two archael, Crenarchaeota and Euryarchaeota, lineages. Overall signature sequences showed that the clones were closely related to domains Archaea and Eucarya. However, at least nine nucleotides distinguished the novel clones from domains Archaea and Eucarya. Phylogenetic trees drawn by maximum parsimony, neighbor joining and maximum likelihood methods also showed unique phylogenetic position of the clones. A very specific primer set was synthesized to detect the presence of the novel group of organisms in terrestrial environments. A specific DNA fragment was amplified from all of paddy soil DNAs, and this fact suggests that the novel organisms inhabit paddy soils.

  • PDF

Marine-Derived Pharmaceuticals - Challenges and Opportunities

  • Lindequist, Ulrike
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.561-571
    • /
    • 2016
  • Marine biosphere is the largest one of the earth and harbors an enormous number of different organisms. Living conditions differ fundamentally from those in terrestrial environment. The production of specific secondary metabolites is an important adaption mechanism of marine organisms to survive in the sea. These metabolites possess biological activities which make them interesting as possible drugs for human. The review presents sources, chemistry, production and pharmacology of FDA approved marine derived pharmaceuticals arranged according to their therapeutic indication. Four of the presently seven approved drugs are used for the treatment of cancer. Each another one is applicated for treatment of viral diseases, chronic pain and to lower triglyceride level in blood. Some other products are of interest in diagnostic and as experimental tools. Besides, this article describes challenges in drug development from marine sources, especially the supply problem.

Simulating the Pesticide PECs Using the Integrated RICEWQ-RIVWQ Model (RICEWQ-RIVWQ 연계모형을 이용한 농약 PECs 모의)

  • Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.502-508
    • /
    • 2005
  • In order to assess the environmental risk of pesticides, information is usually required on the likelihood of exposure of organisms to the constituents of pesticides, expressed as a predicted environmental concentrations (PECs) and the likely effects of the constituents of pesticides on aquatic and terrestrial organisms, expressed as a predicted no-effect concentrations (PNECs). In this paper, the pesticide fate model, RICEWQ alone and coupled with the pesticide movement model, RIVWQ was used to simulate the potential for predicting the environmental concentrations of pesticides in paddy fields and adjacent surface water systems. The RICEWQ model was successfully calibrated against field data in poinding depth for paddy field. For the assessment of importance for water and pesticide management conditions and field scales, the integrated RICEWQ-RIVWQ model was simulated by the scenario analysis. The results of this study can be used as a basic information for assessing the environmental risk of pesticides.

  • PDF

A chemosystematic investigation of selected Stichococcus-like organisms (Trebouxiophyta)

  • Van, Anh Tu;Karsten, Ulf;Glaser, Karin
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.123-135
    • /
    • 2021
  • The taxonomy of green microalgae relies traditionally on morphological traits but has been rapidly changing since the advent of molecular methods. Stichococcus Nägeli is a cosmopolitan terrestrial algal genus of the class Trebouxiophyceae that has recently been split into seven lineages, which, along with Pseudostichococcus, comprise the Stichococcuslike group; there is a need to further characterize these genera, since they are morphologically enigmatic. Here we used organic osmolytes as chemotaxonomic marker to verify the phylogenetic position of Stichococcus-like strains and were also able to exclude a strain hitherto identified as Gloeotila contorta from this group. Stichococcus-like organisms, including those recently revised, were characterized by the production of the polyol sorbitol and the disaccharide sucrose in high amounts, as is typical of Prasiola-clade algae. The results demonstrate that organic osmolyte chemotaxonomy can support green algal taxonomic designations as fundamental research.

Bioactive Marine Natural Products in Drug Development

  • Kim, Se-Kwon;Ravichandran, Y. Dominic;Kim, Moon-Moo;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.209-223
    • /
    • 2007
  • Nature is one of the most important sources of pharmacologically active compounds in the search for drugs against life threatening diseases. Even though plants and terrestrial microorganisms have played as an important source for the new drug candidates from nature, marine organisms such as tunicates, sponges, soft corals, sea horses, sea snakes, marine mollusks, seaweeds, nudibranches, sea slugs and marine microorganisms are increasingly attracting attention in recent years. Marine organisms also have the potential to develop into future drugs against important diseases, such as cancer, a range of bacterial and viral diseases, malaria, and inflammations. Even though the mechanism of action in the molecular level of most metabolites is still unclear, the mechanisms by which they interfere with the pathogenesis of a wide range of diseases have been reported. The knowledge of this is one of the key factors necessary to develop bioactive compounds into medicines. This is due to their structurally unique and pharmacologically active compounds. The potential pharmaceutical, medicinal and research applications of some of these compounds are discussed in hundreds of scientific papers, and are reviewed here.

  • PDF

RADIATION DOSE TO HUMAN AND NON-HUMAN BIOTA IN THE REPUBLIC OF KOREA RESULTING FROM THE FUKUSHIMA NUCLEAR ACCIDENT

  • Keum, Dong-Kwon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • This paper describes the radiation doses to human and non-human biota in the Republic of Korea, as a result of the Fukushima nuclear accident. By using the measured airborne activity and ground deposition, the effective and thyroid doses of five human age groups (infant, 5 years, 10 years, 15 years and adult) were estimated by the ECOSYS code, and the whole body absorbed dose rate of the eight Korean reference animals and plants (RAPs) was estimated by the K-BIOTA (the Korean computer code to assess the risk of radioactivity to wildlife). The first-year effective and thyroid human doses ranged from 5.7E-5 mSv in the infant group to 2.0E-4 mSv in the 5 years group, and from 5.0E-4 mSv in the infant group to 3.4E-3 mSv in the 5 years group, respectively. The life-time (70 years) effective and thyroid human doses ranged from 1.5E-4 mSv in the infant group to 3.0E-4 mSv in the 5 years group, and from 6.0E-4 mSv in the infant group to 3.5E-3 mSv in the 5 years group, respectively. The estimated maximum whole body absorbed dose rate to the Korean RAPs was 6.7E-7 mGy/d for a snake living in soil (terrestrial biota), and 2.0E-5 mGy/d for freshwater fish (aquatic biota), both of which were far less than the generic dose criteria to protect biota from ionizing radiation. Also, the screening level assessment for ERICA's (Environmental Risks from Ionizing Contaminants: Assessments and management) limiting organisms showed that the risk quotient (RQ) for the estimated maximum soil and water activity was significantly less than unity for both the terrestrial and freshwater organisms. Conclusively, the radiological risk of the radioactivity released into the environment by the Fukushima nuclear accident to the public and the non-human biota in the republic of Korea is considered negligible.