• Title/Summary/Keyword: Terrain slop

Search Result 6, Processing Time 0.025 seconds

The Effects of Declination and Curvature Weight in DEM (수치표고모형에서 경사와 곡률경중율의 영향)

  • Yang, In-Tae;Choi, Seung-Pil;Kwon, Hyun;Kim, Wook-Nam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.45-51
    • /
    • 1990
  • DEM must have a high accuracy against the actual topographic model. A model which can compute heights responding to random plane position by using of the topographic data and interpolation must be constructed. Interpolation affected by the accuraccy of the observations included noise, which affected by the slop and curvature weight. Data smoothing is a method to reduce the noise. Average declination and area ratio are variable which result similarity in according to slope. But in local area, area ratio well shows a local change. This study try to classify the terrain by the declination to analysis the effects of the declination and curvature weights, and then to represent the most probable model. The result are following : In terrain classification by the slop, p16 and p24 were fitted in the plane surface fit p16 and S in the varying surface, and S and p24 in the irregular surface in classification by curvature, p24 and S were fitted in the plane or varying surface, and p16 in the irregular surface In case of hybrid, p16, p24 and S are fitted in the plane, varying and irregular surface respectively. Smoothing is the most effective in case of slope of 50 persentage and of curvature weight of 0.0015.

  • PDF

Analysis on Habitat Characteristics of the Korean Bats (Chiroptera) Using Geographic Information System (GIS)

  • Yoon, Kwang Bae;Lim, Sang Jin;Park, Yung Chul
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2016
  • We obtained a total of 36 GPS coordinates of the seven bat species of Rhinolophus ferrumequinum, Myotis ikonnikovi, M. nattereri, M. petax, Murina ussuriensis, Plecotus auritus, and Pipistrellus abramus. Characteristics of forests (forest type, age class, DBH class and crown density), terrain (aspect, slope and distance from mountain stream) and disturbance factors (distance from human residential areas and distance from cultivated areas) that bats have used as their habitats were revealed from the GIS analysis based on GPS coordinates of the 36 positions that bats were found. The bats-preferred forest type is broad-leaf forests (43%) with the trees of the 2th (31%) and 5th (31%) age class, the trees of sapling (36%) and large DBH class (31%), and sparse crown density (67%). Bats prefer the slop direction of the east (39%), the gradient below $15^{\circ}$ (61%), the ranges within 200 m from the mountain streams (92%), the ranges within 200 m near roads (89%), the ranges of 200-400 m from human residential areas (28%), and the ranges within 200 m from cultivated areas (36%).

The inference about the cause of death of Korean Fir in Mt. Halla through the analysis of spatial dying pattern - Proposing the possibility of excess soil moisture by climate changes - (한라산 구상나무 공간적 고사패턴 분석을 통한 고사원인 추정 - 기후변화에 따른 토양수분 과다 가능성 제안 -)

  • Ahn, Ung San;Kim, Dae Sin;Yun, Young Seok;Ko, Suk Hyung;Kim, Kwon Su;Cho, In Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.1-28
    • /
    • 2019
  • This study analyzed the density and mortality rate of Korean fir at 9 sites where individuals of Korean firs were marked into the live and dead trees with coordinates on orthorectified aerial images by digital photogrammetric system. As a result of the analysis, Korean fir in each site showed considerable heterogeneity in density and mortality rate depending on the location within site. This make it possible to assume that death of Korean fir can occur by specific factors that vary depending on the location. Based on the analyzed densities and mortality rates of Korea fir, we investigated the correlation between topographic factors such as altitude, terrain slope, drainage network, solar radiation, aspect and the death of Korean fir. The density of Korean fir increases with altitude, and the mortality rate also increases. A negative correlation is found between the terrain slope and the mortality rate, and the mortality rate is higher in the gentle slope where the drainage network is less developed. In addition, it is recognized that depending on the aspect, the mortality rate varies greatly, and the mean solar radiation is higher in live Korean fir-dominant area than in dead Korean fir-dominant area. Overall, the mortality rate of Korean fir in Mt. Halla area is relatively higher in areas with relatively low terrain slope and low solar radiation. Considering the results of previous studies that the terrain slope has a strong negative correlation with soil moisture and the relationship between solar radiation and evaporation, these results lead us to infer that excess soil moisture is the cause of Korean fir mortality. These inferences are supported by a series of climate change phenomena such as precipitation increase, evaporation decrease, and reduced sunshine duration in the Korean peninsula including Jeju Island, increase in mortality rate along with increased precipitation according to the elevation of Mt. Halla and the vegetation change in the mountain. It is expected that the spatial patterns in the density and mortality rate of Korean fir, which are controlled by topography such as altitude, slope, aspect, solar radiation, drainage network, can be used as spatial variables in future numerical modeling studies on the death or decline of Korean fir. In addition, the method of forest distribution survey using the orthorectified aerial images can be widely used as a numerical monitoring technique in long - term vegetation change research.

GIS Application for Site Planning

  • Han, Seung-Hee;Lee, Jin-Duk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • The general urban plan is the plane plan which limits general and uniformed constructions; however, the district unit plan is the solid plan that can leads various constructions by discriminating by plot, housing area and lot. Therefore, for the zone plan, not only the two-dimensional plot information such as plot usage plan, but also the three-dimensional plot information needs to be used to analyze lighting, sewerage and directions. To fulfill such requirements, the information can be gathered using GIS and photogrammetric method for the reasonable and efficient zone plan. In this research, the information about the testing area for the zone plan has been gathered using GIS method, and the three-dimensional model about the area has been built using the satellite image and DEM. As the result, plot usage analysis, direction analyst, water system analysis, and slope analysis has been done and used efficiently to build the district unit plan. Also, after the result after applying the analyzed result to the actual area says this is very appropriate and efficient.

  • PDF

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

An Accuracy Estimation of AEP Based on Geographic Characteristics and Atmospheric Variations in Northern East Region of Jeju Island (제주 북동부 지역의 지형과 대기변수에 따른 AEP계산의 정확성에 대한 연구)

  • Ko, Jung-Woo;Lee, Byung-Gul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2012
  • Clarify wind energy productivity depends on three factors: the wind probability density function(PDF), the turbine's power curve, and the air density. The wind PDF gives the probability that a variable will take on the wind speed value. Wind shear refers to the change in wind speed with height above ground. The wind speed tends to increase with the height above ground. also, Wind PDF refers to the change with height above ground. Wind analysts typically use the Weibull distribution to characterize the breadth of the distribution of wind speeds. The Weibull distribution has the two-parameter: the scale factor c and the shape factor k. We can use a linear least squares algorithm(or Ln-least method) and moment method to fit a Weibull distribution to measured wind speed data which data was located same site and different height. In this study, find that the scale factor is related to the average wind speed than the shape factor. and also different types of terrain are characterized by different the scale factor slop with height above ground. The gross turbine power output (before accounting for losses) was caculated the power curve whose corresponding air density is closest to the air density. and air desity was choose two way. one is the pressure of the International Standard Atmosphere up to an elevation, the other is the measured air pressure and temperature to calculate the air density. and then each power output was compared.