• Title/Summary/Keyword: Terrain data

Search Result 949, Processing Time 0.028 seconds

Implementation of the DMM System for Flight Information Visualization (비행 정보 시각화를 위한 DMM 시스템의 구현)

  • Hur, Hwa Ra;Park, Myeong Chul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.115-121
    • /
    • 2011
  • The flight information visualization of the aircraft is the system which is widely used to the threat against low altitude tasks and terrain altitude. But, it is difficult to implement the system because of restrictions that GPS data and huge geographic information should be stored. In this paper, it proposes economic DMM (Digital Moving Map) system for flight information visualization from open-source-base. First, the flight information is transferred from X-Plane through UDP and then demonstrated on the DMM system. In the proposed DMM system, flight information is visualized on the map information downloaded from an ArcGIS Map server using the mapping data between the present altitude of the aircraft and the terrain altitude. The result of this paper could be used an economic tool in the field of flight information visualization and the game algorithm research.

LOS Analysis Algorithm for Mid-range Guided Weapon System (중거리지대공 유도무기체계 적용을 위한 가시선 분석 알고리듬 연구)

  • Lee, Han-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.642-649
    • /
    • 2010
  • LOS analysis is used for optimal deployment of mid-range guided weapon system or system engagement effectiveness simulation. Comparing to real-world, LOS analysis includes error sources such as coarse terrain data resolution, refraction of radio waves, and several ideal assumptions. In this research, exact LOS algorithm under assumption of constant earth curvature and error analysis of that is investigated. It proved that LOS algorithm under assumption of constant earth curvature has negligible error in mid-range guidance weapon system's scope.

Application of Drones for the Analysis of Hazard Areas in Mountainous Disaster (산지재해 발생 위험지역 분석을 위한 드론의 적용)

  • Lee, Jeong Hoon;Jun, Kye Won;Jun, Byong Hee
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.65-70
    • /
    • 2018
  • Terrain data for disaster analysis in hazardous or disaster areas is not only important but also needs to be built quickly. In particular, the introduction of drones is in the early stages of research using drones in a variety of fields such as shooting, analyzing and managing hazardous areas. It is expected that drone will be faster, safer and more effective than existing data collection method in case of small scale disaster hazard area and disaster area where equipment or manpower input is difficult. Therefore, in this study, drone shooting was performed for hazardous areas in mountainous roads located in Samcheok city, Gangwon province, and ground reference points were measured by RTK-GPS. The measured data were converted into DSM (Digital Surface Model) data by coordinate correction using Pix4D postprocessing program and then applied to the analysis of the hazard area of mountainous area. As a result, it was shown that it is effective to identify the risk by using the basic terrain data obtained from the drones.

Assessment of Feasibility of Rainfall-Runoff Simulation Using SRTM-DEM Based on SWMM (SWMM 기반 SRTM-DEM을 활용한 강우-유출 모의 가능성 평가)

  • Mirae Kim;Junsuk Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • The recent increase in impermeable surfaces due to urbanization and the occurrence of concentrated heavy rainfall events caused by climate change have led to an increase in urban flooding. To predict and prepare for flood damage, a convenient and highly accurate simulation of rainfall-runoff based on geospatial information is essential. In this study, the storm water management model (SWMM) was applied to simulate rainfall runoff in the Bangbae-dong area of Seoul, using two sets of topographical data: The conventional topographic digital elevation model (TOPO-DEM) and the proposed shuttle radar topography mission (SRTM)-DEM. To evaluate the applicability of the SRTM-DEM for rainfall-runoff modeling, two DEMs were constructed for the study area, and rainfall-runoff simulations were performed. The construction of the terrain data for the study area generally reflected the topographical characteristics of the area. Quantitative evaluation of the rainfall-runoff simulation results indicated that the outcomes were similar to those obtained using the existing TOPO-DEM. Based on the results of this study, we propose the use of SRTM-DEM, a more convenient terrain data, in rainfall-runoff studies, rather than asserting the superiority of a specific geospatial data.

Analysis of Topographic Environment for Urban Forest Area in Taejon City Using Landsat - 5 TM and Digital Terrain Elevation Data (Landsat-5 TM과 수치지형데이타를 이용한 도시내 산림의 지형환경 분석 - 대전시를 중심으로 -)

  • 장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.10 no.1
    • /
    • pp.58-65
    • /
    • 1996
  • The environment in urban are becoming worse and forest is being recognized the major part of city by the increase of population and facilities. This study was carried out to analyze topographic environment as the basis for reasonable management and utility of forest situated in Taejon city and its vicinities using Sandst-5 TM and digital terrain elevation data(DTED). Forest area was extracted by Landsat-5 TM data. Distribution of elevation, slope and aspect was derived from digital terrain elevation data. The research area to analyze ropographic environment for urban forest were Bomumsan, Bongsan, Kabhasan, Sikchangsan, and Kyechoksan. Forest, the largest area in Taejon covers 55.1% of totaf area. This is more 5 times than urban area. 70.8% of forest area in Taejon city is located in elevation of lower than 200m and 4.8% of that is located in elevation of upper than 400m. Distribution of elevation is 45.7% of total area for 100m to 200m in Kyechoksan and is 92.4% of total area for lower than 300m in Bomumsan. Elevation of upper than 300m is 20.4% of total area in Kabhasan and is 46.6% of total area in Sikchangsan. The slope of more 20 digree is over 50% of total area in every area except for Bonsan and 35.2% of total area in Sikchangsan and Kahasan than in Bomumsan and Kyechoksan.

  • PDF

Near-ground wind and its characterization for engineering applications

  • Crandell, Jay H.;Farkas, William;Lyons, James M.;Freeborne, William
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.143-158
    • /
    • 2000
  • This report presents the findings of a one-year monitoring effort to empirically characterize and evaluate the nature of near-ground winds for structural engineering purposes. The current wind engineering practice in the United States does not explicitly consider certain important near-ground wind characteristics in typical rough terrain conditions and the possible effect on efficient design of low-rise structures, such as homes and other light-frame buildings that comprise most of the building population. Therefore, near ground wind data was collected for the purpose of comparing actual near-ground wind characteristics to the current U.S. wind engineering practice. The study provides data depicting variability of wind speeds, wind velocity profiles for a major thunderstorm event and a northeaster, and the influence of thunderstorms on annual extreme wind speeds at various heights above ground in a typical rough environment. Data showing the decrease in the power law exponent with increasing wind speed is also presented. It is demonstrated that near-ground wind speeds (i.e., less than 10 m above ground) are likely to be over-estimated in the current design practice by as much as 20 percent which may result in wind load over-estimate of about 50% for low-rise buildings in typical rough terrain. The importance of thunderstorm wind profiles on determination of design wind speeds and building loads (particularly for buildings substantially taller than 10 m) is also discussed. Recommendations are given for possible improvements to the current design practice in the United States with respect to low-rise buildings in rough terrain and for the need to study the impact of thunderstorm gust profile shapes on extreme value wind speed estimates and building loads.

A Study on the Production of Orthophoto Map from Digital Imagery Data of SPOT Satellite (SPOT 위성의 수치영상자료를 이용한 정사투영사진지도의 제작에 관한 연구)

  • Yeu, Bock-Mo;Sohn, Duk-Jae;Park, Joung-Nam;Jeong, Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.83-96
    • /
    • 1993
  • The orthophto map is seen as the form of picture with the uniform reduced scale as the current terrain map. Thus it provides a reasonable feeling of scene and is easy to be interpreted. Furthermore, digital orthophoto is currently used as the basic terrain information data of the Geo-Spatial Information System(GSIS). Therefore, the orhtophoto map has high potential use as a future terrain map. This paper studies the method of producing orthophoto map by using the digital satellite imagery data taken from SPOT satellite of France. The production of orthophoto map requires the process of generating orthophoto imagery with digital elevation model, which process is called digital differential rectification. As the final accuracy of orthophoto map depends on that of digital elevation model, the precise and efficient production method of digital elevation model should be preceded. This study investigated the method of producing digital elevation model directly from SPOT satellite imagery and generated ortho-image by resampling the original SPOT imagery through digital differential rectification. Finally, Simple orthophoto map was made by overlaying the ortho-image and the contour map from digital elevation model.

  • PDF