• Title/Summary/Keyword: Terrain Data

Search Result 954, Processing Time 0.025 seconds

A Study of Band Characteristic of Color Aerial Photos for Image Matching (영상 정합을 위한 컬러 항공사진의 밴드 특성에 관한 연구)

  • Kim, Jin-Kwang;Lee, Ho-Nam;Hwang, Chul-Sue
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.187-190
    • /
    • 2007
  • This study is for analyzing best band in image matching using correlation coefficient of left and right images of stereo image pair, lot red, green, blue band images separated from color aerial photo and gray image converted from the same color aerial photo image. The image matching is applied to construct Digital Elevation Model(DEM) or terrain data. The correlation coefficients and variation by change of pixel patch size are computed from pixel patches of which sizes are $11{\times}11{\sim}101{\times}101$. Consequently, the correlation coefficient in red band image is highest. The lowest is in blue band. Therefore, to construct terrain data using image matching, the red band image is preferable. As the size of pixel patch is growing, the correlation coefficient is increasing. But increasing rate declines from $51{\times}51$ image patch size and above. It is proved that the smaller pixel patch size than $51{\times}51$ is applied to construct terrain data using image matching.

  • PDF

Analysis of Terrain Data Change using Digital Elevation Data (수치표고자료를 활용한 지형자료변화 분석)

  • 이형석;송승호;배상호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.385-388
    • /
    • 2004
  • Many environmental destruction factors are accompanied in the mining development work and the secondary environmental disaster and the induction factors are inhered. We aquired digital data using aerial photogrammetry to analyze the terrain current situation according to the development situation of the mining restoration plan. We made the object area to 3D model and conducted terrian change monitoring. Then, we presented the decision-making information to improve rational management according to the original state plan.

  • PDF

Profile-based TRN/INS Integration Algorithm Considering Terrain Roughness (지형 험준도를 고려한 프로파일 기반 지형참조항법과 관성항법의 결합 알고리즘)

  • Yoo, Young Min;Lee, Sun Min;Kwon, Jay Hyun;Yu, Myeong Jong;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • In recent years alternative navigation system such as a DBRN (Data-Base Referenced Navigation) system using geophysical information is getting attention in the military navigation systems in advanced countries. Specifically TRN (Terrain Referenced Navigation) algorithm research is important because TRN system is a practical DBRN application in South Korea at present time. This paper presents an integrated navigation algorithm that combines a linear profile-based TRN and INS (Inertial Navigation System). We propose a correlation analysis method between TRN performance and terrain roughness index. Then we propose a conditional position update scheme that utilizes the position output of the conventional linear profile type TRN depending on the terrain roughness index. Performance of the proposed algorithm is verified through Monte Carlo computer simulations using the actual terrain database. The results show that the TRN/INS integrated algorithm, even when the initial INS error is present, overcomes the shortcomings of linear profile-based TRN and improves navigation performance.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.

An Open Standard-based Terrain Tile Production Chain for Geo-referenced Simulation

  • Yoo, Byoung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.497-506
    • /
    • 2008
  • The needs for digital models of real environment such as 3D terrain or cyber city model are increasing. Most of applications related with modeling and simulation require virtual environment constructed from geospatial information of real world in order to guarantee reliability and accuracy of the simulation. The most fundamental data for building virtual environment, terrain elevation and orthogonal imagery is acquired from optical sensor of satellite or airplane. Providing interoperable and reusable digital model is important to promote practical application of high-resolution satellite imagery. This paper presents the new research regarding representation of geospatial information, especially for 3D shape and appearance of virtual terrain. and describe framework for constructing real-time 3D model of large terrain based on high-resolution satellite imagery. It provides infrastructure of 3D simulation with geographical context. Web architecture, XML language and open protocols to build a standard based 3D terrain are presented. Details of standard-based approach for providing infrastructure of real-time 3D simulation using high-resolution satellite imagery are also presented. This work would facilitate interchange and interoperability across diverse systems and be usable by governments, industry scientists and general public.

Comparison Analysis of Turbulence Intensity and Fatigue Load of Onshore Wind Farms According to Terrain (지형에 따른 육상풍력발전단지 난류강도 및 피로 하중 비교 분석)

  • Yeong-Hwi Kim;Minji Kim;Insu Paek
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.57-67
    • /
    • 2023
  • This study aimed to investigate differences in turbulence intensity and turbine loads among onshore wind farms located in various types of terrain. To achieve this, simulations were conducted for two onshore wind farms with identical wind turbines and capacity but situated on complex and flat terrains. The simulations used meteorological data gathered over a 10-year period from automatic weather stations nearest to the wind farms. WindSim and WindPRO software tools were employed for wind field and load analysis, respectively. The simulation results revealed that wind farm A, situated on complex terrain, exhibited significantly higher effective turbulence intensity than wind farm B on flat terrain, as expected. Consequently, the load indices of several wind turbines exceeded 100 % in wind farm A, indicating that the turbines could not reach their design lifespan. From the simulation study, aimed at reducing both the effective turbulence intensity and turbine loads, it became evident that while increasing turbine spacing could decrease effective turbulence intensity to some extent, it couldn't completely resolve the issue due to the inherently high ambient turbulence intensity on complex terrain. The problem with wind turbine loads could only be completely resolved by using wind turbines with a turbine class of A+, corresponding to a reference turbulence intensity of 0.18.

3D Terrain Reconstruction Using 2D Laser Range Finder and Camera Based on Cubic Grid for UGV Navigation (무인 차량의 자율 주행을 위한 2차원 레이저 거리 센서와 카메라를 이용한 입방형 격자 기반의 3차원 지형형상 복원)

  • Joung, Ji-Hoon;An, Kwang-Ho;Kang, Jung-Won;Kim, Woo-Hyun;Chung, Myung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.26-34
    • /
    • 2008
  • The information of traversability and path planning is essential for UGV(Unmanned Ground Vehicle) navigation. Such information can be obtained by analyzing 3D terrain. In this paper, we present the method of 3D terrain modeling with color information from a camera, precise distance information from a 2D Laser Range Finder(LRF) and wheel encoder information from mobile robot with less data. And also we present the method of 3B terrain modeling with the information from GPS/IMU and 2D LRF with less data. To fuse the color information from camera and distance information from 2D LRF, we obtain extrinsic parameters between a camera and LRF using planar pattern. We set up such a fused system on a mobile robot and make an experiment on indoor environment. And we make an experiment on outdoor environment to reconstruction 3D terrain with 2D LRF and GPS/IMU(Inertial Measurement Unit). The obtained 3D terrain model is based on points and requires large amount of data. To reduce the amount of data, we use cubic grid-based model instead of point-based model.

An Acceleration Technique of Terrain Rendering using GPU-based Chunk LOD (GPU 기반의 묶음 LOD 기법을 이용한 지형 렌더링의 가속화 기법)

  • Kim, Tae-Gwon;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • It is hard to represent massive terrain data in real-time even using recent graphics hardware. In order to process massive terrain data, mesh simplification method such as continuous Level-of-Detail is commonly used. However, existing GPU-based methods using quad-tree structure such as geometry splitting, produce lots of vertices to traverse the quad-tree and retransmit those vertices back to the GPU in each tree traversal. Also they have disadvantage of increase of tree size since they construct the tree structure using texture. To solve the problem, we proposed GPU-base chunked LOD technique for real-time terrain rendering. We restrict depth of tree search and generate chunks with tessellator in GPU. By using our method, we can efficiently render the terrain by generating the chunks on GPU and reduce the computing time for tree traversal.

Wind Speed Prediction in Complex Terrain Using a Commercial CFD Code (상용 CFD 프로그램을 이용한 복잡지형에서의 풍속 예측)

  • Woo, Jae-Kyoon;Kim, Hyeon-Gi;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.8-22
    • /
    • 2011
  • Investigations on modeling methods of a CFD wind resource prediction program, WindSim for a ccurate predictions of wind speeds were performed with the field measurements. Meteorological Masts having heights of 40m and 50m were installed at two different sites in complex terrain. The wind speeds and direction were monitored from sensors installed on the masts and recorded for one year. Modeling parameters of WindSim input variables for accurate predictions of wind speeds were investigated by performing cross predictions of wind speeds at the masts using the measured data. Four parameters that most affect the wind speed prediction in WindSim including the size of a topographical map, cell sizes in x and y direction, height distribution factors, and the roughness lengths were studied to find out more suitable input parameters for better wind speed predictions. The parameters were then applied to WindSim to predict the wind speed of another location in complex terrain in Korea for validation. The predicted annual wind speeds were compared with the averaged measured data for one year from meteorological masts installed for this study, and the errors were within 6.9%. The results of the proposed practical study are believed to be very useful to give guidelines to wind engineers for more accurate prediction results and time-saving in predicting wind speed of complex terrain that will be used to predict annual energy production of a virtual wind farm in complex terrain.