• Title/Summary/Keyword: Terpenoids

Search Result 148, Processing Time 0.026 seconds

Comparison of Volatile Terpenoid Content from Thermal Processing Condition in Carrot (당근 가공시 열처리 조건에 따른 휘발성 Terpenoids 함량 비교)

  • Park, Sin
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.589-594
    • /
    • 2002
  • Changes in the content of volatile terpenoids were investigated with heat-treated carrot. As heat treatment temperature became higher, the amount of volatile terpenoids decreased significantly. According to heat-treatment period, the volatile terpenoids, a-pinene and total terpenoids, decreased drastically during the initial 30-minutes of heat treatment but the rate of decrease slowed down afterwards. When changes in the content of volatile terpenoids in carrot juice were investigated according to sterilization temperature and period, the content decreased quickly with higher sterilization temperature. According to sterilization period, the content of volatile terpenoids decreased drastically during the initial 20-minutes of sterilization but decreased gradually afterwards. The amount of total terpenoids decreased more when sterilization was done at 10$0^{\circ}C$ for 20 minutes compared to sterilization at 6$0^{\circ}C$ and 8$0^{\circ}C$ for 60 min. In order to reduce the amount of volatile terpenoids in carrot juice, sterilization at high temperature for a short period of time would be more effective compared with sterilization at low temperature for a long period of time.

Essential Oil Components of Leaves and Resins from Pinus densiflora and Pinus koraiensis (소나무와 잣나무의 잎과 수지에 함유된 정유 성분)

  • Song, Hong-Keun;Kim, Jae-Kwang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.59-67
    • /
    • 1994
  • The essential oils of leaves and resins from P. densiflora and P. koraiensis were analyzed to identify their components. After each retention times of 45 known terpenoids were dertermined with a fixed analytical condition by GC the essential oil compounds of leaves and resins were identified by comparing their retention times with the retention times of known standards. To confirm these results the essential oil components of leaves from P. koraiensis were analized by 2 different GC/MS. According to these results, 36 terpenoids in essential oils of leaves from P. densiflora and P. koraiensis were identified and 15 terpenoids and 22 terpenoids were identified from P. koraiensis resin and P. densiflora resin, respectively. The major components which are more than 2% of total amaunt of volatile components were as follows: 1. The major terpenoids of leaves from red pine. ${\alpha}$-pinene, camphene, ${\beta}$-pinene, D-limonene, ${\beta}$-phellandrene, myrcene, terpinolene, ${\alpha}$-terpineol. 2. The major terpenoids of leaves from korean pine. ${\alpha}$-pinene, camphene, myrcene, D-limonene, 3-carene, terpinolene, bornyl acetate, ${\beta}$-caryophyllene, ${\alpha}$-terpineol, borneol, ${\delta}$-cardinene. 3. The major terpenoids of resin from red pine. ${\alpha}$-pinene, ${\beta}$-pinene, myrcene, ${\beta}$-phellandrene, linalool, linalyl acetate. 4. The major terpenoids of resin from korean pine. ${\alpha}$-pinene, ${\beta}$-pinene, D-limonene, ${\beta}$-caryophyllene, phytol.

  • PDF

Induction of PCB degradative pathway by plant terpenoids as growth substrates or inducers

  • Jeong, Gyeong-Ja;Kim, Eung-Bin;So, Jae-Seong;Go, Seong-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.489-492
    • /
    • 2000
  • The eventual goal of this study is to elucidate roles of plant terpenoids (e.g., cymene, limonene and others) as natural substrates in the cometabolic biodegradation of PCBs and to develop an effective PCB bioremediation technology. The aim of this study was to examine how plant terpenoids, as natural substrates or inducers would affect the biodegradation of PCB congeners. Various PCB degraders that could grow on biphenyl and several terpenoids were tested for their PCB degradation capabilities. The PCB congener degradation activities were first monitored through resting cell assay technique that could detect degradation products of the substrate. The congener removal was also confirmed by concommitant GC analysis. The PCB degraders, Pseudononas sp. P166 and Caynebacterium sp. T104 were found to grow on both biphenyl and terpenoids ((S)-(-) limonene, p-cymene and ${\alpha}-terpinene$) whereas Arthrobacter B1B could not grow on the terpenoids as a sole carbon source. The strain B1B grown on biphenyl showed a good degradation activity for 4,4'-dichlorobiphenyl (DCBp) while strains P166 and T104 gave about 25% of B1B activity. Induction of degradation by cymene, limonene and terpine was hardly detected by the resting cell assay technique. This appeared to be due to relatively lower induction effect of these terpenoids compared with biphenyl. However, a subsequent GC analysis showed that the congener could be removed up to 30% by the resting cells of T104 grown on the terpenoids. This indicates that terpenoids, widely distributed in nature, could be utilized as both growth and/or inducer substrate for PCB biodegradation.

  • PDF

Studies on the Terpenoids in the Volatile Constituents of Liaoning Schisandra Chinensis Baillon

  • Hou, Dongyan;Zhang, Weihua;Hui, Ruihua
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.505-509
    • /
    • 1995
  • The terpenoids in the volatile constituents of Liaoning Shcisandra Chinesis Baillon have been determined by the analytical method of GC/MS. Thirty terpenoids molecular structure were characterized. They are 11.89% monterpenes, 4.60% monoterpene oxides, 58.74% sesquiterpene hydrocarbons, and 1.62% oxygen-containing sesquiterpenoids in the total volatile constituents quantified by chromatograph. Among them, the sesquiterpene make up the characteristic constituents. Every terpenoid constituent percent content was obtained using area normalization method of HP-59970 chemstation.

  • PDF

Studies on Measuring Volatile Terpenoids in Carrots Using the Direct Headspace Sampling Method (Direct Headspace Sampling 방법을 이용한 당근의 휘발성 Terpenoids 분석에 관한 연구)

  • Park, Yong;Ryu, Jang-Bal;Park, Sang-Gyu;Park, Shin
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.536-540
    • /
    • 1997
  • Volatile terpenoids of carrots were measured by the direct headspace sampling method(DHS) with gas chromatography as a study for the breeding of high quality carrots. Using this method, 7 terpenoids such as ${\alpha}-pinene$, ${\beta}-pinene$, ${\beta}-myrcene$, ${\alpha}-terpinene$, limonene, ${\gamma}-terpinene$, and terpinolene were clearly separated. However ${\alpha}-phellandrene$ was not clearly separated from ${\beta}-myrcene$. In addition to this, higher boiling point compounds such as terpinen-4-ol, bornyl acetate, and ${\alpha}-bisbolol$ were not found. The coefficients of $determination(r^2)$ for the 7 terpenoids were higher than 0.99 and the standard curves were highly significant. Four replicated samples using this method demonstrated great reproducibility; the coefficidnt of variation (C.V.) for ${\alpha}-pinene$, ${\beta}-pinene$, ${\beta}-myrcene$, limonene, ${\gamma}-terpinene$, terpinolene, and total terpenoids were 6.8, 6.8, 8.4, 7.1, 3.8, 10.1, 7.1%. Sixty five carrot cultivars breeded worldwide were evaluated for the 7 terpenoids and total terpenoids; the range for ${\alpha}-pinene$, ${\beta}-pinene$, ${\beta}-myrcene$, ${\alpha}-terpinene$, limonene, ${\gamma}-terpinene$, terpinolene, and total terpenoids were $0.28{\sim}2.48\;ppm$, $0.35{\sim}1.87\;ppm$, $0.56{\sim}1.51\;ppm$, 0 ppm, $0.59{\sim}1.84\;ppm$, $0.87{\sim}3.33\;ppm$, $5.15{\sim}35.81\;ppm$, and $9.07{\sim}42.30\;ppm$, respectively. Big differences in each terpenoid and total terpenoids were found among cultivars. On the total terpenoids of the 65 cultivars, 5 cultivars(7.7%) contained less than 10 ppm, 15 cultivars (23.1%) $10{\sim}11.99\;ppm$, 14 cultivars(21.5%) $12{\sim}13.99\;ppm$, 9 cultivars(13.8%) $14{\sim}15.99\;ppm$, 10 cultivars(15.4%) $16{\sim}17.99\;ppm$, 4 cultivars(6.2%) $18{\sim}19.99\;ppm$, 5 cultivars(7.7%) $20{\sim}29.99\;ppm$, and 3 cultivars(4.6%) were higher than 30 ppm. Generally, cultivars developed in Japan contained less total terpenoids than cultivars developed in Europe and America.

  • PDF

The Effects of Pseudotsuga menziesii Monoterpenoids on Nitrification (Pseudotsuga menziesii의 Monoterpenoid가 질화작용에 미치는 효과)

  • ;Jean H. Langenheim
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.251-260
    • /
    • 1994
  • Nitrification potential bioassay and terpenoid analyses were performed to determine the roles of terpenoid as an inhibitor of nitrification in the Douglas fir (Pseudotsuga menziesii) forests. The effect of terpenoids in the forest floor was also tested by adding $10{\mu}g/ml$ of four terpenoids(${\alpha}-pinene,{\beta}-pinene,{\gamma}-terpinene, and terpinolene) to mineral soils. The amount of terpenoids in the litter was higher than that in the soil and varied over time, but the amount of terpenoids in the soils was relatively constant. The correlation between the amount of terpenoids in the litter and ammonium oxidation was in inverse proportion to that in the mineral layers $(r^2=0.678)$. Inhibition of ammonium oxidation by terpenoids in the litter was always higher than in the mineral layer, but nitrite oxidation was different from the ammonium oxidation. The fact that there was greater nitrate production from ammonium in the mineral layer than in the forest floor layer seems to be due to the less amounts of terpenoids in the mineral layer. The result of the experiment in which four terpenoids were added to the mineral layer suggests that, after some lag time, the four terpenoids were effective in inhibiting ammonium oxidation. However, nitrite oxidation did not appear to be affected by the four terpenoids. Accordingly, all of our results suggested that terpenoids in Douglas fir forests apparently would act as a part of the inhibitors of nitrification.

  • PDF

Comparative Analysis of Terpenoids in in vitro Culture Media of Metabolically Engineered Transgenic and Wild Type Spearmint (Mentha spicata L.) (대사 제어된 스피아민트와 야생 스피아민트 기내배양배지의 터페노이드 성분 비교 분석)

  • Kang, Young-Min;Park, Dong-Jin;Song, Hyun-Jin;Ma, Ho-Seop;Karigar, Chandrakant;Choi, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.5
    • /
    • pp.301-307
    • /
    • 2012
  • IPP isomerase (Iso) and Limonene synthase (Limo) are important enzymes in terpenoids biosynthesis pathway. The wild type and each metabolically engineered (Iso and Limo) transgenic spearmint (Mentha spicata Linne) plants were compared for their growth patterns and the contents of essential oil in in vitro culture media. The profile of terpenoid metabolites was obtained from the essential oil of the metabolically engineered transgenic spearmint, which was extracted using a modified SDE method, by GC-MS analysis. The growth of wild spearmint was more profuse in B5 culture medium than in other media. Significant differences in leaf and root growth patterns were observed between metabolically engineered transgenic and wild type spearmint plants. The leaves of the transgenic spearmint plants were slightly elongated but were dramatically narrower than those of wild type spearmints. The content of essential oil of transgenic spearmint was different slightly depending on the target terpenoid genes. The content of essential oils in Limo transgenic plants was higher than that of Iso, except for transgenic plant in B5 medium. The transgenic spearmint produced more terpenoids than the wild type. Iso spearmint extracts showed eleven terpenoids and a phenylpropane, while Limo spearmint extracts contained nine terpenoids. However, extracts from the wild type showed the presence of only four terpenoids.

Analysis of Terpenoids as Volatile Compound Released During the Drying Process of Cryptomeria japonica (삼나무 건조 중 발생하는 휘발성 유기화합물 Terpenoids의 분석)

  • Lee, Su-Yeon;Gwak, Ki-Seob;Kim, Seon-Hong;Lee, Jun-Jae;Yeo, Hwan-Myeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.242-250
    • /
    • 2010
  • The aim of this study was to investigate the terpenoids of Total Volatile Organic Compounds (VOCs) released during drying of Cryptomeria japonica using the thermal extractor (TE). Considering the drying process of C. japonica, temperatures of TE were set at $27^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$, $100^{\circ}C$, and $120^{\circ}C$, respectively. As the result, the emission factors of VOCs and terpenoids were increased as temperature increased. The amount of terpenoids included in VOCs emission factors were 87.5%, 81.6%, 83.6%, 90.1%, and 97.3% depending on above temperatures, respectively. Especially at$100^{\circ}C$ and $120^{\circ}C$, the amount of terpenoids were measured more than 90%. ${\delta}$-cadinene was the highest yield at each temperature and 32 types of terpenoids were collected. Emitted terpenoids were classified into the sesquiterpene group which consists of 15 carbon sources. These 32 sesquiterpenes were used for determining the useful bioactivity such as antifungal activity by the agar dilution. As the result, they showed the antifungal activity against Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum gypseum. The 5,000 ppm concentration of terpenoids showed a strong activity with 100% against the 3 fungi. At the 1,000 ppm concentration of terpenoids, the antifungal activities against three fungi were 95.2%, 98.7%, and 97.3%, and their activities were a little inhibited at 100 ppm concentration.

Terpenoids from Two Sponge Species of the Aegean Sea

  • Erdogan, Ilkay;Tanaka, Junichi;Higa, Tatsuo;Sener, Bilge
    • Natural Product Sciences
    • /
    • v.5 no.4
    • /
    • pp.177-180
    • /
    • 1999
  • The ethanolic extracts of two shallow water sponge species collected from the Aegean Sea afforded thirteen terpenoids in total, two of which were determined to be new. The structure elucidation of the terpenoids was carried out by spectroscopic techniques and comparison with related authentic compounds. The terpenoids have also been assayed for antibacterial activity. This is the first report about the metabolites isolated from the marine sponges of the Aegean Sea in Turkey.

  • PDF

Specific Biodegradation of Polychlorinated Biphenyls (PCBs) Facilitated by Plant Terpenoids

  • Jung, Kyung-Ja;Eungbin kim;So, Jae-Seong;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 2001
  • The aim of this study was to examine how plant terpenoids, as natural growth substrates or inducers, would affect the biodegradation of PCB congeners. Various PCB degraders that could grow on biphenyl and several terpenoids were tested for their PCB degradation capabilities. Degradation activities of the PCB congeners, 4,4-dichlorobiphenyl (4,4-DCBp) and 2,2-dichlorobiphenyl (2,2-DCBp), were initially monitored through a resting cell assay technique that could detect their degradation products. The PCB degraders, Pseudomonas ((S)-(-) limonene, p-cymene and $\alpha$-terpinene) whereas Arthrobacter sp. B1B could not grow on the terpenoids as a sole carbon source. The B1B strain grown on biphenyl exhibited good degradation activity for 4,4-DCBp and 2,2-DCBp, while the activity of strains P166 and T104 was about 25% that of the B1B strain, respectively. Concomitant GC analysis, however, demonstrated that strain T104, grown on (S)-(-) limonene, p-cymene and $\alpha$-terpinene, could degrade 4,4-DCBp up to 30%, equivalent to 50% of the biphenyl induction level. Moreover, strain T104 grown on (S)-(-) limonene, could also degrade 2,2-DCBp up to 30%. This indicates that terpenoids, widely distributed in nature, could be utilized as both growth and/or inducer substrate(s) for PCB biodegradation in the environment.

  • PDF