• Title/Summary/Keyword: Terminal alkyne

Search Result 4, Processing Time 0.018 seconds

Synthesis of Dendrimers from Alkyne-focal Dendrons by Oxidative Homo-coupling of Terminal Acetylene

  • Han, Seung-Choul;Kim, Jong-Sik;Lee, Jae-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3899-3903
    • /
    • 2011
  • General, fast, and efficient fusion methods for the synthesis of dendrimers with 1,3-diynes at a core were developed. The synthetic strategy was employed the oxidative homo-coupling of terminal alkyne. The oxidative homo-coupling reaction of the alkyne-functionalized Frechet-type dendrons 1-Dm was allowed to provide first through fourth generation dendrimers 2-Gm with 1,3-diynes at core. The fusion of the propargylfunctionalized PAMAM dendrons 3-Dm by homo-coupling of terminal alkyne lead to the formation of symmetric PAMAM dendrimers 4-Gm. Their structure of dendrimers was confirmed by $^1H$ and $^{13}C$ NMR spectroscopy, IR spectroscopy, mass spectrometry, and GPC analysis.

Entry to Highly Hindered Chiral β-Amino Triazoles Bearing a gem-Diaryl Group by Azide-alkyne Click Chemistry

  • Sadu, Venkata Subbaiah;Roy, Harendra Nath;Arigala, Pitchaiah;Hwang, In-Taek;Lee, Kee-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1605-1612
    • /
    • 2014
  • Copper(I)-catalyzed Huisgen cycloaddition of terminal alkynes with unmasked azidoamines derived from amino acids is described. The reported strategy provides a new entry to highly hindered ${\beta}$-amino 1,2,3-triazole derivatives bearing a gem-diaryl group, which are potentially valuable entities as molecular catalysts for asymmetric transformations.

Preparation, Reactions and Catalytic Activities of Water Soluble Iridium-Sulfonated Triphenylphosphine Complex

  • 진종식;장원태;양서균;주광석
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.324-327
    • /
    • 1997
  • Water soluble iridium complex, IrCl(CO)(TPPTS)2·χH2O (1) (TPPTS=m-trisulfonated triphenylphosphine) has been prepared from the reaction of a water soluble complex, IrCl(COD)(TPPTS)2·6H2O (COD=l,5-cyclooctadiene) with CO and unambiguously characterized by electronic absorption, 31P NMR, 13C NMR and IR spectral data. Complex 1 catalyzes the hydration of terminal alkynes to give ketones in aqueous solutions at room temperature. The rate of PhC≡CH hydration dramatically increases with addition of MeOH to the reaction mixture in H2O, which is understood in terms of i) the excellent miscibility between H2O and MeOH and ii) the assumed catalytic hydration pathway involving the initial formation of (alkyne)IrCl(CO)(TPPTS)2.