In this paper we propose a fast and precise control algorithm for a mobile robot, which aims at the self-tuning control applying two multi-layered neural networks to the structure of computed torque method. Through this algorithm, the nonlinear terms of external disturbance caused by variable task environments and dynamic model errors are estimated and compensated in real time by a long term neural network which has long learning period to extract the non-linearity globally. A short term neural network which has short teaming period is also used for determining optimal gains of PID compensator in order to come over the high frequency disturbance which is not known a priori, as well as to maintain the stability. To justify the global effectiveness of this algorithm where each of the long term and short term neural networks has its own functions, simulations are peformed. This algorithm can also be utilized to come over the serious shortcoming of neural networks, i.e., inefficiency in real time.
The purpose of the study was to provide useful implications for management of dessert cafe by discovering selection attributes for product satisfaction and long-term orientation. Using SPSS 22.0 and AMOS 220 Version, the collected data from customers of dessert cafe in Seoul and metropolitan areas were analyzed for frequency analysis, exploratory factor analysis, confirmatory factor analysis, reliability analysis, and covariance structure analysis. As results of hypothesis verification, firstly, service standard and product diversity had a significant effect on product satisfaction of dessert cafe. Secondly, tastes and nutrients influenced positively long-term orientation of dessert cafe. Meanwhile, service standard, mood, and product diversity did not have a significant effect on long-term orientation. Thirdly, product satisfaction affected positively long-term orientation. The results of the study provided useful implications for management of dessert cafe.
코로나 19 유행은 인류 생활 방식과 패턴에 큰 영향을 주었다. 코로나 19는 침 방울(비말)은 물론 공기를 통해서도 감염되기 때문에 가능한 대면 접촉을 피하고 많은 사람이 가까이 모이는 장소는 피할 것을 권고하고 있다. 코로나 19 환자와 접촉했거나 코로나 19 환자가 발생한 장소에 있었던 사람이 코로나 19에 감염되었을 것을 염려한다면 구글에서 코로나 19 증상을 찾아볼 것이라고 충분히 예상해 볼 수 있다. 본 연구에서는 과거 독감 감시와 관리에 중요 역할을 했었던 구글 트렌드(Google Trends)를 다시 소환하고 코로나 19 확진자수 데이터와 결합하여 미래의 코로나 19 확진자수를 예측할 수 있을지 딥러닝 모델(DNN & LSTM)을 사용한 탐색적 데이터 분석을 실시하였다. 특히 이 연구에 사용된 검색어 빈도 데이터는 공개적으로 사용할 수 있으며 사생활 침해의 우려도 없다. 심층 신경망 모델(DNN model)이 적용되었을 때 한국에서 가장 많은 인구가 사는 서울(960만 명)과 두 번째로 인구가 많은 부산(340만 명)에서는 검색어 빈도 데이터를 포함하여 예측했을 때 더 낮은 오류율을 기록했다. 이와 같은 분석 결과는 검색어 빈도 데이터가 일정 규모 이상의 인구수를 가진 도시에서 중요한 역할을 할 수 있다는 것을 보여주는 것이다. 우리는 이와 같은 예측이 더 강력한 예방 조치의 실행이나 해제 같은 정책을 결정하는데 근거 자료로 충분히 사용될 수 있을 것으로 믿는다.
Purpose: The purpose of this study was to examine satisfaction with counseling in long-term care service, and to compare the scores of counseling satisfaction according to variables among beneficiaries of Korean long-term care services. Methods: Questionnaires were completed by 445 beneficiaries of long-term care insurance to measure satisfaction with counseling. Research design was cross-sectional descriptive design. Data were analyzed using descriptive statistics, t-test and ANOVA for evaluating differences in satisfaction with counseling according to variables including economic status, the level of long-term care insurance approval, duration of long term care service, and conditions of counseling. Results: The score of satisfaction with counseling was somewhat high as 71.67. The score of counselor's attitude was highest among the subcategories of satisfaction. The factors that influenced satisfaction with counseling were frequency and time of counseling (F=12.19, p<.001). Conclusion: Home-based individual counseling is necessary for the elderly who need long-term care service. The National Long-term Care Insurance Corporation should offer counseling and assistance to elders and their caregivers about long term care insurance.
The increaseing speeds are accompanied by decreases in pulse rise and fall time in VLSI circuits. These accenturate the high frequency spectral contents of the signals and cause the frequency dependent loss of the conductors which interconnect the various sub-circuits composing of VLSI circuit. The lossy effect is approximated by the square root of frequency dependence of the per unit length resistance. In the practical applications, several problems may arise along with this approximation, so we extend our investigation of the lossy effect by numerical Laplace inversion method.
The efficiency of thesytem depends upon an accurate extraction capability of index terms in the system of information search or in that of automatic index. Therefore, extraction of accurate index terms is of utmost importance. This report presents the generation methods of composition noun for efficient index term extraction by using words of high frequency appearance, so that the right documents can be found during information search. For the sake of presentation of this method, index terms of composition noun shall be extracted by applying the rule of composition and disintegration to the nouns with high frequency of appearance in the documents, such as those with upper 30%∼40% of frequency ratio. In addition, for he purpose of effecting an inspection of validity in relation to a composition of high frequency nouns such as those with upper 30∼40% of frequency ratio as presented in this report, it proposes an adequate frquency ratio during noun composition. Based upon the proposed application, in this short documents with less than 300 syllables, low frequency omissions were noticed, when composed with nouns in the upper 30% of frequency ratio; whereas the documents with more than 30 syllables, when composed with nouns in he upper 40% of frequency ration, had a considerable reduction of low frequency omissions. Thus, total number of index terms has decreased to 57.7% of these existing and an accurate extraction of index terms with an 85.6% adequacy ratio became possible.
빅 데이터에서 텍스트 마이닝은 많은 수의 데이터로부터 많은 특징 추출하기 때문에, 클러스터링 및 분류 과정의 계산 복잡도가 높고 분석결과의 신뢰성이 낮아질 수 있다. 특히 텍스트마이닝 과정을 통해 얻는 Term document matrix는 term과 문서간의 특징들을 표현하고 있지만, 희소행렬 형태를 보이게 된다. 본 논문에서는 탐지모델을 위해 텍스트마이닝에서 개선된 GA(Genetic Algorithm)을 이용한 특징 추출 방법을 설계하였다. TF-IDF는 특징 추출에서 문서와 용어간의 관계를 반영하는데 사용된다. 반복과정을 통해 사전에 미리 결정된 만큼의 특징을 선택한다. 또한 탐지모델의 성능 향상을 위해 sparsity score(희소성 점수)를 사용하였다. 스팸메일 세트의 희소성이 높으면 탐지모델의 성능이 낮아져 최적화된 탐지 모델을 찾기가 어렵다. 우리는 fitness function에서 s(F)를 사용하여 희소성이 낮고 TF-IDF 점수가 높은 탐지모델을 찾았다. 또한 제안된 알고리즘을 텍스트 분류 실험에 적용하여 성능을 검증하였다. 결과적으로, 제안한 알고리즘은 공격 메일 분류에서 좋은 성능(속도와 정확도)을 보여주었다.
본 연구는 우리나라에서 매년 증가하고 있는 노인장기요양기관의 부당청구 맥락과 부당청구 예방을 위한 대책들이 어떠한지를 탐색하기 위해서 언론기사를 활용한 텍스트 마이닝 분석을 실시하였다. 기사는 뉴스 빅테이터 분석 시스템인 빅카인즈에서 수집하였고, 수집기간은 노인장기요양보험이 시행된 2008년 7월부터 2022년 2월 28일까지로 약 15년간이다. 이 기간 동안 '노인요양+부당청구', '장기요양+부당청구', 등의 키워드로 총 2,627개의 기사가 수집되었고, 이중 중복된 기사를 제외한 총 946개가 선정되었다. 본 연구의 텍스트마이닝 분석결과로 첫째, 모든 구간(2008.7.1-2022.2.28)에서 가장 높은 빈도로 언급된 상위 10위 키워드는 노인장기요양기관, 부당청구, 국민건강보험공단, 노인장기요양보험, 장기요양급여(비용), 노인요양시설, 보건복지부, 노인, 신고, 포상금(지급)의 순으로 나타났다. 둘째, N-gram 분석결과 장기요양급여(비용)과 부당청구, 부당청구와 노인장기요양기관, 허위와 부당청구, 신고와 포상금(지급), 노인장기요양기관과 신고 등의 순으로 나타났다. 셋째, TF-IDF 분석은 빈도분석의 결과와 유사하게 나타났지만, 신고, 포상금(지급), 증가 등은 순위가 상승하였다. 상기 분석결과를 바탕으로 노인장기요양기관 부당청구 예방을 위한 방향성을 제시하였다.
The Purposes of this study are to examine the relationship benefit perception of fashion product consumers and how their benefit perception influences oil long-term relationship intention, and to construct a model of long-term relationship intention. The data was obtained from a survey of 540 females over 20years old living in seoul, Gyeonggi-do, and Gwangju-city during June in 2004. It was analyzed by frequency, reliability, factor analyses. The results of the survey were: 1 , Relationship benefits perceived by fashion product consumers were informational benefit, psychological benefit, special treatment benefit, economical benefit, and social benefit. 2. Relationship benefit influenced on satisfaction, trust, commitment, and commitment influenced on long-term relationship intention finally The findings of this study are expected to strengthen the necessity of applying customer relationship management for the fashion market.
본(本) 연구는 두 개의 중요한 목적(目的)들을 가지고 있다. 첫째 목적(目的)은 새로운 단어(單語) 가중기법(加重技法)을 고안하는 것이다. 두번째 목적(目的)은 제안된 단어(單語) 가중기법(加重技法)과 다른 네개의 단어(單語) 가중기법(加重技法)들의 문헌검색결과들을 평가하는 것이다. 본 연구에서 실행된 실험결과는 비교적 간단한 스파크 죤스(Sparck Jones)의 역문헌빈도 가중기법(加重技法)과 제안된 단어(單語) 가중기법(加重技法)의 검색결과들이 더 복잡한 계산을 요하는 다른 세개의 단어(單語) 가중기법(加重技法)들의 검색결과들보다 더 나았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.