Deep learning frameworks are still evolving, and there are various frameworks. Typical deep learning frameworks include TensorFlow, PyTorch, and Keras. The Deepram framework utilizes optimization models in image classification through image learning. In this paper, we use the TensorFlow and PyTorch frameworks, which are most widely used in the deep learning image recognition field, to proceed with image learning, and compare and analyze the results derived in this process to know the optimized framework. was made.
Journal of Korea Society of Digital Industry and Information Management
/
v.19
no.3
/
pp.245-251
/
2023
Facial expression recognition plays a significant role in understanding human emotional states. With the advancement of AI and computer vision technologies, extensive research has been conducted in various fields, including improving customer service, medical diagnosis, and assessing learners' understanding in education. In this study, we develop a model that can infer emotions in real-time from a webcam using transfer learning with TensorFlow.js and MobileNet. While existing studies focus on achieving high accuracy using deep learning models, these models often require substantial resources due to their complex structure and computational demands. Consequently, there is a growing interest in developing lightweight deep learning models and transfer learning methods for restricted environments such as web browsers and edge devices. By employing MobileNet as the base model and performing transfer learning, our study develops a deep learning transfer model utilizing JavaScript-based TensorFlow.js, which can predict emotions in real-time using facial input from a webcam. This transfer model provides a foundation for implementing facial expression recognition in resource-constrained environments such as web and mobile applications, enabling its application in various industries.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.386-388
/
2017
TensorFlow와 알파고의 등장으로 인공지능의 높은 성능과 다양한 활용 가능성을 보이면서, 폭 넓은 산업 분야에서 머신러닝 기술에 대한 수요가 증가하고 있다. 반면, 머신러닝 기술은 GPU 기반 고속 병렬처리 기술과 인프라 기술을 기반으로 하고 있기 때문에, 머신러닝 기반 서비스 개발 및 제공에 어려움을 겪고 있다. 본 논문에서는 이와 같은 문제를 개선하기 위해서 개발한 고성능 GPU 기반 컨테이너 클라우드 시스템을 소개한다. 해당 시스템은 GPU 기반 고속 병렬처리를 지원하고, Kubernetes 클러스터에서 컨테이너를 기반으로 TensorFlow Serving을 손쉽게 배포할 수 있는 기능을 제공한다.
Proceedings of the Korean Society For Composite Materials Conference
/
2005.04a
/
pp.134-136
/
2005
Homogenization method is adopted to predict the permeability tenor for glass fiber plain woven fabrics. Calculating the permeability tensor numerically is an encouraging task because the permeability tensor is a key parameter in resin transfer molding (RTM). Based on multi-scale approach of the homogenization method, the permeability for the micro-unit cell within fiber tow is computed and compared with that obtained from flow analysis for the same micro-unit cell. It is found that they are in good agreement. In order to calculate the permeability tensor of macro-unit cell for the plain woven fabrics, the Stokes and Brinkman equations which describe inter-tow and intra-tow flow respectively are employed as governing equations. The effective permeabilities homogenized by considering intra-tow flow are compared with those obtained experimentally. Control volume finite element method (CVFEM) is used as a numerical method. It is shown that the asymptotic expansion homogenization method is an attractive method to predict the effective permeability for heterogeneous media.
Alshehri, Abdulrahman Mohammed;Fenais, Mohammed Saeed
International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.237-245
/
2022
The prominence of IoTs (Internet of Things) and exponential advancement of computer networks has resulted in massive essential applications. Recognizing various cyber-attacks or anomalies in networks and establishing effective intrusion recognition systems are becoming increasingly vital to current security. MLTs (Machine Learning Techniques) can be developed for such data-driven intelligent recognition systems. Researchers have employed a TFDNNs (Tensor Flow Deep Neural Networks) and DCNNs (Deep Convolution Neural Networks) to recognize pirated software and malwares efficiently. However, tuning the amount of neurons in multiple layers with activation functions leads to learning error rates, degrading classifier's reliability. HTFDNNs ( Hybrid tensor flow DNNs) and MRNs (Modified Residual Networks) or Resnet CNNs were presented to recognize software piracy and malwares. This study proposes HTFDNNs to identify stolen software starting with plagiarized source codes. This work uses Tokens and weights for filtering noises while focusing on token's for identifying source code thefts. DLTs (Deep learning techniques) are then used to detect plagiarized sources. Data from Google Code Jam is used for finding software piracy. MRNs visualize colour images for identifying harms in networks using IoTs. Malware samples of Maling dataset is used for tests in this work.
High Deborah or Weissenberg number problems in viscoelastic flow modeling have been known formidably difficult even in the inertialess limit. There exists almost no result that shows satisfactory accuracy and proper mesh convergence at the same time. However recently, quite a breakthrough seems to have been made in this field of computational rheology. So called matrix-logarithm (here we name it tensor-logarithm) formulation of the viscoelastic constitutive equations originally written in terms of the conformation tensor has been suggested by Fattal and Kupferman (2004) and its finite element implementation has been first presented by Hulsen (2004). Both the works have reported almost unbounded convergence limit in solving two benchmark problems. This new formulation incorporates proper polynomial interpolations of the logarithm for the variables that exhibit steep exponential dependence near stagnation points, and it also strictly preserves the positive definiteness of the conformation tensor. In this study, we present an alternative procedure for deriving the tensor-logarithmic representation of the differential constitutive equations and provide a numerical example with the Leonov model in 4:1 planar contraction flows. Dramatic improvement of the computational algorithm with stable convergence has been demonstrated and it seems that there exists appropriate mesh convergence even though this conclusion requires further study. It is thought that this new formalism will work only for a few differential constitutive equations proven globally stable. Thus the mathematical stability criteria perhaps play an important role on the choice and development of the suitable constitutive equations. In this respect, the Leonov viscoelastic model is quite feasible and becomes more essential since it has been proven globally stable and it offers the simplest form in the tensor-logarithmic formulation.
As the importance of the 4th industrial revolution and ICT technology increased, it became a software centered society. Existing software training was limited to the composition of the learning environment, and a lot of costs were incurred early. In order to solve these problems, a learning method using a web compiler was developed. The web compiler supports various software languages and shows compilation results to the user via the web. However, Web compilers that support artificial intelligence technology are missing. In this paper, we designed and implemented a tensor flow based web compiler, Google's artificial intelligence library. We implemented a system for learning artificial intelligence by building a meteorJS based web server, implementing tensor flow and tensor flow serving, Python Jupyter on a nodeJS based server. It is expected that it can be utilized as a tool for learning artificial intelligence in software centered society.
In the present study, an explicit algebraic stress model is shown to be the exact tensor representation of algebraic stress model by directly solving a set of algebraic equations without resort to tensor representation theory. This repeals the constraints on the Reynolds stress, which are based on the principle of material frame indifference and positive semi-definiteness. An a priori test of the explicit algebraic stress model is carried out by using the DNS database for a fully developed channel flow at Rer = 135. It is confirmed that two-point correlation function between the velocity fluctuation and the Laplacians of the pressure-gradient i s anisotropic and asymmetric in the wall-normal direction. Thus, a novel composite algebraic Reynolds stress model is proposed and applied to the channel flow calculation, which incorporates non-local effect in the algebraic framework to predict near-wall behavior correctly.
Transactions of the Korean Society of Mechanical Engineers
/
v.18
no.4
/
pp.967-976
/
1994
A tensor invariant model equation for the turbulent energy dissipation rate is proposed in the present study, which is able to simulate secondary straining effects such as curvature effects without the introduction of additional empirical input. The source term in this model has a combined form of the generation term due to the mean vorticity with the conventional one due to the mean strain rate. An extended low-Reynolds-number $k-\epsilon$ turbulence model involving this new model equation is tested for a turbulent Coutte flow between coaxial cylinders with inner cylinder rotated, which is a well defined example of curved flows. The predicted results indicate that the present model works much better for this flow, compared with previous models.
Reynolds averaged Wavier-Stokes simulations based on the Reynolds stress model was performed to investigated the effect of inlet flow angle on the distributions of the Reynolds stress tensor inside tip leakage vortex of a linear compressor cascade. Two different inlet flow angles ${\beta}=29.3^{\circ}$(design condition) and $36.5^{\circ}$(off-design condition) were considered. Stress tensor analysis, which transforms the Reynolds stress into the principal direction, was applied to show an anisotropy of the normal stresses. Whereas the anisotropy was highest in the region where the tip leakage vortex collides the suction side of the blade and tip leakage flow enters between blade tip of the pressure side and the endwall, it had the lowest value at the center of tip leakage vortex. It was also found that the magnitude of maximum shear stress at design condition was greater than that of off-design condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.