• Title/Summary/Keyword: Tension transfer equation

Search Result 16, Processing Time 0.029 seconds

Mooring Tension and Motion Characteristics of a Floating Fish Reef with Pipe in Waves and Currents Using Numerical Model

  • Kim, Tae-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.997-1008
    • /
    • 2010
  • The mooring line tension and motion response of a floating fish reef system were analyzed using a Morison equation type numerical model. The reef structure was constructed with pipe and suspended up from the bottom with a single, high tension mooring. Input forcing parameters into the model consisted of both regular and random waves, with and without currents. Heave, surge and pitch dynamic calculations were made, along with the tension response in the mooring lines. Results were analyzed in both the time and frequency domains and where appropriate, linear transfer functions were calculated. In addition, damped and natural periods of the system were determined to examine a resonating situation.

Tension/Heat/Thermal Deformation Analysis of a Cold Coiled Strip in Coiling Process (냉연 판재의 권취공정에 있어서 장력/열/변형 해석)

  • 정영진;이규택;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.39-43
    • /
    • 2002
  • A new model for heat transfer and thermal deformation analysis according to strip mm in coiling process has been proposed. Finite difference analyses for heat transfer of cold rolled coil have been carried out under various coiling tensions and strip crown using the equivalent thermal conductivity for the radial direction of cold rolled coil which is a function of strip thickness, surface characteristics and compressive pressure. The compressive pressure is calculated from a equation expressed as a function of hoop stress and coil tension considering strip mm obtained by experiment. Finite element method for thermal deformation of cold rolled coil has been performed to investigate the effects of the strip crown, the coil tension and temperature. From these analyses, it is found that the axial inhomogeneity of thermal deformation is increased as the strip crown, compressive pressure, and temperature drop in cold coiled strip increase.

  • PDF

Analysis of Dynamic Behavior in GMAW System (GMA용접 시스템의 동적 거동에 대한 해석)

  • 이재영;최재형;이지혜;유중돈
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.41-48
    • /
    • 2000
  • Dynamic behaviors of the GMAW system are simulated using the short-circuit transfer model and the characteristic equations fir the power supply, wire system and arc. The conventional wire equation, which relates the rate change of the wire extension to the wire feed rate and melting rate, is modified to include effects of the molten drop attached at the wire tip. The modified wire equation describes behaviors of the GMAW system more precisely and provides information about the initial bridge volume for short-circuit transfer. The proposed short-circuit model predicts the variation of parameters such as the current, voltage, short-circuit frequency and time considering the effects of the surface tension and electromagnetic force due to current. The calculated results are in broad agreements with the experimental results under the argon shielding condition.

  • PDF

Coupled Heat and Mass Transfer in Absorption of Water Vapor into LiBr-$H_2O$ Solution Flowing over a Finned Inclined Surface (좁은 휜이 달린 경사면을 흐르는 리튬브로마이드 수용액 흡수기에서의 열 및 물질전달)

  • 조은준;서태범
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.860-867
    • /
    • 2001
  • Absorption of water vapor into LiBr-$H_2O$ O solution flowing over a finned inclined surface is numerically investigated. The momentum, energy, and diffusion equation are numerically solved using a finite difference method. The four different shapes of the wall surfaces are considered to find the best surface for absorption assuming that the wall temperature and the surface tension are constant. The effects of the fin interval and Reynolds number are investigated. Based on the numerical results, it is known that the parabolic surface shows better absorption performance than the other surfaces, and that water vapor absorption increases gradually with decreasing the fin interval.

  • PDF

Hydrodynamics of submersible aquaculture cage system using numerical model

  • Kim, Tae-Ho;Fredriksson, David W.;Decew, Judson
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.46-56
    • /
    • 2008
  • A numerical model analysis was performed to analyze the motion and mooring tension response of submersible fish cage systems in irregular waves and currents. Two systems were examined: a submersible cage mooring with a single, high tension mooring and the same system, but with an additional three point mooring. Using a Morison equation type model, simulations of the systems were conducted with the cage at the surface and submerged. Irregular waves(JONSWAP spectrum) with and without a co-linear current with a magnitude of 0.5m/s were simulated into the model as input parameters. Surge, heave and pitch dynamic calculations were made, along with tension responses in the mooring lines. Results were analyzed in both the time and frequency domains and linear transfer functions were calculated.

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF

Mathieu stability of offshore Buoyant Leg Storage & Regasification Platform

  • Chandrasekaran, S.;Kiran, P.A.
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.345-360
    • /
    • 2018
  • Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). Six buoyant legs support the deck and are placed symmetric with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotation from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut-moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. Postulated failure cases, created by placing eccentric loads at different locations resulted in dynamic tether tension variation; chaotic nature of tension variation is also observed in few cases. A detailed numerical analysis is carried out for BLSRP using Mathieu equation of stability. Increase in the magnitude of eccentric load and its position influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability proves the severity of instability.

A Study on Temperature Properties Analysis for Tension Measurement of Steel Cables Using Magnetic Sensor (자기센서에 의한 강재 케이블 장력측정에서 온도특성에 대한 연구)

  • Park, Hae-won;Ahn, Bong-young;Lee, Seung-seok;Park, Jeong-hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.181-188
    • /
    • 2009
  • Measuring the tensile strength of steel cables used to support bridges is a critical inspection item in terms of the safety of a bridge. Today, cable tension is measured with the vibration method and loadcell. Recently, some advanced countries have conducted studies on measuring tension with magnetic method and are suggesting prospective results. Since there were no such studies ongoing in Korea, we began a study on measuring tension with magnetic method as we are undergoing researches to improve the precision of measurements. It is necessary to consider the influence for the magnetic field and the temperature of steel cables in tension measurement of magnetic method. In this paper, we tested an output characteristic of tension sensor according to temperature and deduced temperature compensation coefficient in the given magnetic field and applied the compensation coefficient to the tension measurement system in the lab. We analyzed and evaluated testing results for the output voltages of the tension sensor according to cable tensions.

Transverse Vibration of ATM Crown belt (ATM용 크라운벨트의 횡진동 해석)

  • Son, Young-Boo;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1212-1217
    • /
    • 2007
  • ATM(automated teller machine) is a machine which can deposit and withdraw money directly. For effective transfer of bills in the machine, crown belts are used. In this paper, the transverse vibration of crown belt is investigated. The equation of motion of the belt is derived using Lagrange's equation. Galerkin's method is applied to convert the partial differential equation to the ordinary differential equations. Experimental investigations are performed on the belt system with the variation of pulley type, eccentricity, and tension. The results of numerical analysis show in good agreement with the experimental results.

  • PDF

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface. (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.139-144
    • /
    • 2003
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the melt pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.

  • PDF