• Title/Summary/Keyword: Tension structure

Search Result 754, Processing Time 0.028 seconds

Tension Measurement of Stay Cables in Consideration with Image Including Vehicle (차량이 포함된 이미지를 고려한 사장재 케이블의 장력 측정 )

  • Sung-Wan Kim;Dong-Uk Park;Jin-Soo Kim;Seung-Su Park;Jae-Bong Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.58-66
    • /
    • 2023
  • In this study, cable tension was measured using the vibration method, and a vision-based system was applied as a sensor to measure the displacement response of a cable in a non-contact method. In the vision-based system, the camera is installed in a location that considers the target structure and the field of view of the camera. However, it can be difficult to recognize the control points required to measure the displacement response of a structure as the target structure and other structures such as vehicles may be included in the image at the intended installation location. In this study, a distorted image including a vehicle shows inaccurate results in image analysis due to the installation position of the vision-based system. Accordingly, the image including the vehicle was eliminated by calculating the similarity between the two images. To verify the validity of the method of estimating the cable tension of cable-stayed bridges using the proposed method, the vibration method was applied to cable-stayed bridges in service to measure the tension.

An Experimental Study on Crack Detection of RC Structure using Measured Strain (측정변형률을 이용한 RC 구조물의 균열검출에 관한 실험적 연구)

  • Park, Ki-Tae;Park, Hung-Seok;Lee, Kyu-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.193-199
    • /
    • 2002
  • Structral crack of RC structure generally occurs when the tension stress by applied load is larger than tension resistance of concrete, and it means deterioration of structure and the decrease of load resistance. Because structural crack of structure can occur critical damage to structure occasionally, the research on crack detection algorithm of RC structure is needed for assurance of structural safety and effective maintenance of structure. In this paper, we executed the laboratory test on measuring strain of RC beam's tension and compression zone, using strain gauge which is widely used on strain measurement of civil structure. By using measured strain, we analyzed strain change, elastic modulus change, and neutral axis change to detect crack of RC beam. As a result, we proposed the simple and effective crack detection algorithm using trends of neutral axis position change.

Analysis of Elastic-Plastic Stress Fields near the Crack Tip under Tension-Compression Loading (인장-압축 하중 하의 균열선단의 탄.소성 응력해석)

  • 석창성;김수용;김동중;안하늘;박은수;원종일
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 1999
  • In this study, theoretical stress field analysis near the crack tip under tension-compression loading was performed. The results of the theoretical stress analysis were compared to the results of Finite Element Method(FEM). From this study, generation of tensile residual stress at crack tip was proved after 1-cycle of tension-compression loading, and the fracture toughness and the fracture load of a structure can be decreased by the residual stress.

  • PDF

Shape Finding and Stress Finding for Pneumatic Membrane Structures by Dynamic Relaxation Method (동적이완법에 의한 공기막구조물의 형태탐색과 응력해석)

  • 문창훈;이경수;배종효;최옥훈;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.268-275
    • /
    • 1999
  • The purpose of this study is to propose the method of determining the initial pneumatic membrane structures surface and stresses and displacements. Tension structure such as pneumatic membrane structures is stabilized by their initial prestress and air pressure. The process to find initial structural overall shape of tension structures produced by initial prestress called shape finding. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress. The result for initial surface of pneumatic membrane element and maximum displacement in large deformation in analysis is compared with well-known nonlinear numerical method such as Newton-raphson method and dynamic relaxation method

  • PDF

Estimation of a tensile force in a cable using dynamic characteristics (진동특성을 이용한 케이블의 인장력 산정)

  • Choi, Sang-Hyun;Nam, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.461-467
    • /
    • 2007
  • Exact application of the tensile force is critical to high-tension members in civil engineering structures, and thus actual tensile forces have often been estimated in field. To date, a few methodologies have been presented utilizing static and/or dynamic responses of tension members. Each of these methods has its disadvantages as well as advantages in its procedures, accuracy, and equipment requirements. In this paper, the feasibility of a sensitivity based methodology, based on the relationship between the natural frequencies and the applied tensile force, developed by the authors, is verified using the measured data from a cable-stayed bridge structure. From the results, it is shown that the proposed method can be utilized in estimating the tensile force in tension member of a real structure.

  • PDF

Reliability of TLP tethers under extreme tensions

  • Siddiqui, N.A.;Ahmad, Suhail
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.317-326
    • /
    • 2003
  • The tension leg platform (TLP) is a moored floating offshore structure whose buoyancy is more than its weight. The mooring system, known as tethers, is vulnerable to failure due to extreme (maximum and minimum) tensions. In the present study the reliability of these tethers under maximum and minimum tension (ultimate limit state) has been studied. Von-Mises failure criteria has been adopted to define the failure of a tether against maximum tension. The minimum tension failure criteria has been assumed to meet when the tethers slack due to loss of tension. First Order Reliability method (FORM) has been adopted for reliability assessment. The reliability, in terms of reliability index, and probability of failure has been obtained for twelve sea states. The probabilities of failure so obtained for different sea states have been adopted for the calculation of annual and life time probabilities of failure.

Load deformation characteristics of shallow suspension footbridge with reverse profiled pre-tensioned cables

  • Huang, Ming-Hui;Thambiratnam, David P.;Perera, Nimal J.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.375-392
    • /
    • 2005
  • Cable supported structures offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. In this paper, a model of shallow cable supported footbridge with reverse profiled pre-tensioned cables is treated and its load deformation characteristics under different quasi-static loads are investigated. Effects of important parameters such as cable sag and pre-tension are also studied. Numerical results performed on a 3D model show that structural stiffness of this bridge (model) depends not only on the cable sag and cross sectional areas of the cables, but also on the pre-tension in the reverse profiled cables. The tension in the top supporting cables can be adjusted to a high level by the pre-tension in the reverse profiled bottom cables, with the total horizontal force in the bridge structure remaining reasonably constant. It is also evident that pre-tensioned horizontally profiled cables can greatly increase the lateral horizontal stiffness and suppress the lateral horizontal deflection induced by eccentric vertical loads.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

Effect of REM Addition on The Surface Tension and The Critical Temperature of The Immiscible Liquid Phase Separation of The 60%Bi-24%Cu-16%Sn alloy

  • Park, Joong-Chul;Min, Soon-Ki;Lee, Joon-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.111-114
    • /
    • 2009
  • For the fabrication of core-shell structure bimetallic lead-free solder balls, both the critical temperature ($T_{cr}$) for the phase separation of two immiscible liquid phases and the temperature coefficient of the interfacial tension between the two separated liquid phases are required. In order to obtain this information, the temperature dependence of the surface tension of 60%Bi-24%Cu-16%Sn(-REM) alloys was measured using the constrained drop method. The slope of the temperature dependence of the surface tension changed clearly at a critical temperature for the separation of two immiscible liquid phases. The critical temperature of the 60%Bi-24%Cu-16%Sn alloy was estimated to be 1097K. An addition of 0.05% Ce decreased the critical temperature to 1085K, whereas that of 0.05% La increased it to 1117K. It was found that the surface tension and its temperature coefficient of the 60%Bi-24%Cu-16%Sn alloy were slightly increased by the addition of 0.05% Ce and 0.05% La. In addition, additions of Ce and La increased the temperature coefficient of the interfacial tension.