• 제목/요약/키워드: Tension stiffening

검색결과 152건 처리시간 0.026초

고강도 콘크리트 인장부재의 인장강화효과와 균열거동 (Tension Stiffening Effect and Crack Behavior of Tension Members Using High Strength Concrete)

  • 김지상;박찬혁
    • 한국건설순환자원학회논문집
    • /
    • 제6권1호
    • /
    • pp.50-58
    • /
    • 2018
  • 콘크리트 구조물의 사용성능을 검증하기 위하여 콘크리트와 철근의 상호 합성 작용에 대한 많은 정보가 필요한데, 균열폭 및 균열간격의 평가는 두 재료의 상호작용인 인장강화효과에 근거하여 이루어진다. 이 논문에서는 압축강도 80MPa 및 100MPa의 고강도 콘크리트에 D13 철근을 사용한 인장부재를 제작하여 직접인장실험을 진행하였다. 이를 통해 고강도 콘크리트의 인장강화 효과를 파악하였고 보통강도 콘크리트의 실험결과에 근거한 현행설계기준의 인장강화효과 평가가 부적절함을 확인하였다. 실험결과에 근거하여 고강도 콘크리트 콘크리트의 특성을 적절하게 반영할 수 있는 실험계수를 산정하였다. 또한 균열거동을 통해서 균열간격을 파악하고 이를 통해 고강도 콘크리트의 인장강화효과에 따른 철근변형률과 콘크리트 변형률 차이에 따른 균열폭을 확인하였다. 이 연구의 결과는 향후 고강도 콘크리트 부재의 인장강화 효과를 연구하는 기초자료로 활용될 수 있을 것이다.

Influence of high-cycle fatigue on the tension stiffening behavior of flexural reinforced lightweight aggregate concrete beams

  • Chen, How-Ji;Liu, Te-Hung;Tang, Chao-Wei;Tsai, Wen-Po
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.847-866
    • /
    • 2011
  • The objective of this study was to experimentally investigate the bond-related tension stiffening behavior of flexural reinforced concrete (RC) beams made with lightweight aggregate concrete (LWAC) under various high-cycle fatigue loading conditions. Based on strain measurements of tensile steel in the RC beams, fatigue-induced degradation of tension stiffening effects was evaluated and was, compared to reinforced normal weight concrete (NWC) beams with equal concrete compressive strengths (40 MPa). According to applied load-mean steel strain relationships, the mean steel strain that developed under loading cycles was divided into elastic and plastic strain components. The experimental results showed that, in the high-cycle fatigue regime, the tension stiffening behavior of LWAC beams was different from that of NWC beams; LWAC beams had a lesser reduction in tension stiffening due to a better bond between steel and concrete. This was reflected in the stability of the elastic mean steel strains and in the higher degree of local plasticity that developed at the primary flexural cracks.

철근콘크리트 판넬의 인장강화효과 (Tension Stiffening Effect in Reinforced Concrete Panels)

  • 곽효경;김도연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.141-148
    • /
    • 1998
  • An analytical model which can simulate the post-cracking behavior of reinforced concrete structures subjected to in-plane shear and normal stresses is presented. Based on the force equilibriums, compatibility conditions, and bond stress-slip relationship between steel and concrete, a criterion to simulate consider the tension-stiffening effect is proposed. The material behavior of concrete is described by an orthotropic constitutive model, and focused on the tension-compression region with tension-stiffening and compression softening effects defining equivalent uniaxial relations in the axes of orthotropy. Correlation studies between analytical results and available experimental data are conducted with the objective to establish the validity of the proposed model.

  • PDF

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar

  • Torres, Lluis;Barris, Cristina;Kaklauskas, Gintaris;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.997-1016
    • /
    • 2015
  • The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it comes to adequately estimating the load-deformation response of steel reinforced concrete and the more recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced flexural members using the concept of equivalent deformation modulus and the smeared crack approach to obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and reinforcement ratio ($n{\rho}$), the effective-to-total depth ratio (d/h), and the level of loading. The proposed methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental data obtained by the authors indicates that the proposed methodology is capable to adequately model the tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading.

Ultimate behavior of RC hyperbolic paraboloid saddle shell

  • Min, Chang-Shik
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.507-521
    • /
    • 1997
  • The ultimate behavior of a reinforced concrete hyperbolic paraboloid saddle shell under uniformly distributed vertical load is investigated using an inelastic, large displacement finite-element program originally developed at North Carolina State University. Unlike with the author's previous study which shows that the saddle shell possesses a tremendous capacity to redistribute the stresses, introducing tension stiffening in the model the cracks developed are no longer through cracks and formed as primarily bending cracks. Even though with small tension stiffening effect, the behavior of the shell is changed markedly from the one without tension stiffening effect. The load-deflection curves are straight and the slope of the curves is quite steep and remains unchanged with varying the tension stiffening parameters. The failure of the shell took place quite suddenly in a cantilever mode initiated by a formation of yield lines in a direction parallel to the support-to-support diagonal. The higher the tension stiffening parameters the higher is the ultimate load. The present study shows that the ultimate behavior of the shell primarily depends on the concrete tensile characteristics, such as tensile strength (before cracking) and the effective tension stiffening (after cracking). As the concrete characteristics would vary over the life of the shell, a degree of uncertainty is involved in deciding a specified ultimate strength of the saddle shell studied. By the present study, however, the overload factors based on ACI 318-95 are larger than unity for all the cases studied except that the tension stiffening parameter is weak by 3 with and without the large displacement effect, which shows that the Lin-Scordelis saddle shell studied here is at least safe.

콘크리트 인장강성이 철근콘크리트 보의 거동에 미치는 영향 (Effect of Tension Stiffering on the Behavior of Reinforced Concrete Beam)

  • 이봉학
    • 한국농공학회지
    • /
    • 제41권4호
    • /
    • pp.104-112
    • /
    • 1999
  • Tensile behavior in concrete has been neglected until recently. However, the effect of tensile stresses in concrete must be considered where the member primarily carries tensile forces or when ultimate strength is affected by the cracking history. In this paper, a series of experiments were performed with a reinforced rectangular beams of 15 specimens in order to investigate the effect of tension stiffening into the nonlinear analysis and cracking behavior. The experimental results were analyzed in terms of load-deflection curves and strain fracture energy with respect to the main experimental variables such as types of specimen, strength of concrete and steel ration. The results from experiments and finite element analysis were compared in terms of load-deflection relationship and cracking pattern. The results are as follows ; The tension stffening effects of reinforced concrete beams were observedc up to yielding of members after cracking showing strain energy difference of 35 % at the beam of 0.57% steel ratio compared with that of beam ignoring the tension stiffening effect. The tension stiffening of concrete strength 400kgf/$\textrm{cm}^2$ and 600kgf/$\textrm{cm}^2$ increased by 8% and 13%, respectively, compared with that of concrete strength 200kgf/$\textrm{cm}^2$. The tension stiffening effects were greater at a ductile member rather than a brittle one. The load-deflection results of finite element analysis showed very similar results from experiment. The crack growth and pattern might be predicted from the nonlinear finite element analysis considering concrete stiffening.

  • PDF

Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete

  • Ganesan, N.;Sahana, R.;Indira, P.V.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.75-86
    • /
    • 2017
  • An experimental work was carried out to study the effect of hybrid fiber on the tension stiffening and cracking characteristics of geopolymer concrete (GPC). A total of 24 concentrically reinforced concrete specimens were cast and tested under uniaxial tension. The grade of concrete considered was M40. The variables mainly consist of the volume fraction of crimped steel fibers (0.5 and 1.0%) and basalt fibers (0.1, 0.2 and 0.3%). The load deformation response was recorded using LVDT's. At all the stages of loading after the first cracking, crack width and crack spacing were measured. The addition of fibers in hybrid form significantly improved the tension stiffening effect. In this study, the combination of 0.5% steel fiber and 0.2% basalt fiber gave a better comparison than the other combinations.

A tension stiffening model for analysis of RC flexural members under service load

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.29-51
    • /
    • 2016
  • Tension-stiffening is the contribution of concrete between the cracks to carry tensile stresses after cracking in Reinforced Concrete (RC) members. In this paper, a tension-stiffening model has been proposed for computationally efficient nonlinear analysis of RC flexural members subjected to service load. The proposed model has been embedded in a typical cracked span length beam element. The element is visualized to consist of at the most five zones (cracked or uncracked). Closed form expressions for flexibility and stiffness coefficients and end displacements have been obtained for the cracked span length beam element. Further, for use in everyday design, a hybrid analytical-numerical procedure has been developed for nonlinear analysis of RC flexural members using the proposed tension-stiffening model. The procedure yields deflections as well as redistributed bending moments. The proposed model (and developed procedure) has been validated by the comparison with experimental results reported elsewhere and also by comparison with the Finite Element Method (FEM) results. The procedure would lead to drastic reduction in computational time in case of large RC structures.

Effect of tension stiffening on the behaviour of square RC column under torsion

  • Mondal, T. Ghosh;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.501-520
    • /
    • 2015
  • Presence of torsional loadings can significantly affect the flow of internal forces and deformation capacity of reinforced concrete (RC) columns. It increases the possibility of brittle shear failure leading to catastrophic collapse of structural members. This necessitates accurate prediction of the torsional behaviour of RC members for their safe design. However, a review of previously published studies indicates that the torsional behaviour of RC members has not been studied in as much depth as the behaviour under flexure and shear in spite of its frequent occurrence in bridge columns. Very few analytical models are available to predict the response of RC members under torsional loads. Softened truss model (STM) developed in the University of Houston is one of them, which is widely used for this purpose. The present study shows that STM prediction is not sufficiently accurate particularly in the post cracking region when compared to test results. An improved analytical model for RC square columns subjected to torsion with and without axial compression is developed. Since concrete is weak in tension, its contribution to torsional capacity of RC members was neglected in the original STM. The present investigation revealed that, disregard to tensile strength of concrete is the main reason behind the discrepancies in the STM predictions. The existing STM is extended in this paper to include the effect of tension stiffening for better prediction of behaviour of square RC columns under torsion. Three different tension stiffening models comprising a linear, a quadratic and an exponential relationship have been considered in this study. The predictions of these models are validated through comparison with test data on local and global behaviour. It was observed that tension stiffening has significant influence on torsional behaviour of square RC members. The exponential and parabolic tension stiffening models were found to yield the most accurate predictions.

고강도 콘크리트의 인장강성효과에 대한 연구 (Tension Stiffening Effect of High Strength Concrete)

  • 윤성호;김준성;염환석;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.495-500
    • /
    • 1998
  • This paper describes an experimental investigation on the effect of concrete strength on tension stiffening behavior. Total ten direct tension specimens were tested with concrete compressive strength range up to 900kg/$\textrm{cm}^2$. From the experimental program, it was observed that higher strength concrete specimens provides smaller crack spacings and less stiffening effect.

  • PDF