References
- ABAQUS (2011), ABAQUS standard user's manuals, Version 6.11, Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI, USA.
- ACI 318 (2005), Building code requirements for structural concrete, American Concrete Institute (ACI) Committee 318, Farmington Hills, MI, USA.
- Balakrishnan, S. and Murray, D.W. (1988), "Concrete constitutive model for NLFE analysis of structures", J. Struct. Eng., 114(7), 1449-1466. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:7(1449)
- Baskar, K., Shanmugam, N.E. and Thevendran, V. (2002), "Finite-element analysis of steel-concrete composite plate girder", J. Struct. Eng., 128(9), 1158-1168. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1158)
- Bischoff, P.H. (2005), "Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber reinforced polymer bars", J. Struct. Eng., 131(5), 752-767. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(752)
- Borosnyoi, A. and Balazs, G.L. (2005), "Models for flexural cracking in concrete: the state of the art", Struct. Concrete, 6(2), 53-62. https://doi.org/10.1680/stco.2005.6.2.53
- CEN-Eurocode 2 (2004), Design of concrete structures-Part 1-1: General rules and rules for buildings, European Standard BS EN 1992-1-1:2004, Brussels.
- Cosenza, E. (1990), "Finite element analysis of reinforced concrete elements in a cracked state", Comput. Struct., 36(1), 71-79. https://doi.org/10.1016/0045-7949(90)90176-3
- Dai, J.G., Ueda, T., Sato, Y. and Nagai, K. (2012), "Modeling of tension stiffening behavior in FRPstrengthened RC members based on rigid body spring networks", Comput. Aid. Civil Infrastruct. Eng., 27(6), 406-418. https://doi.org/10.1111/j.1467-8667.2011.00741.x
- Ghali, A. (1993), "Deflection of reinforced concrete members: A critical review", ACI Struct. J., 90(4), 364-373.
- Ghali, A., Favre, R. and Elbadry, M. (2002), Concrete structures: Stresses and deformations, 3rd Edition, E and Spon, London, UK.
- Ghali, A., Neville, A.M. and Brown, T.G. (2003), Structural analysis: A unified classical and matrix approach, 5th Edition, Spon press, New York, USA.
- Gilbert, R.I. (2006), "Discussion of 'Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber reinforced polymer bars' by Bischoff, P.H.", J. Struct. Eng., 132(8), 1328-1330. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:8(1328)
- Kalkan, I. (2010), "Deflection prediction for reinforced concrete beams through different effective moment of inertia expressions", Int. J. Eng. Res. Dev., 2(1), 72-80.
- Lackner, R. and Mang, H.A. (2003), "Scale transition in steel-concrete interaction. I: Model", J. Eng. Mech., 129(4), 393-402. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:4(393)
- Massicote, B., Elwi, A.E. and MacGregor, J.G. (1990), "Tension-stiffening model for planar reinforced concrete members", J. Struct. Eng., 116(11), 3039-3058. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3039)
- Ning, F., Mickleborough, N.C. and Chan, C.M. (1999), "The effective stiffness of reinforced concrete flexural members under service load conditions", Aust. J. Struct. Eng., 2, 135-144.
- Park, R. and Paulay, T. (1975), Reinforced concrete structures, John Wiley and Sons Inc., Canada.
- Parrotta, J.E., Peiretti, H.C., Gribniak, V. and Caldentey, A.P. (2014), "Investigating deformations of RC beams: experimental and analytical study", Comput. Concrete, 13(6), 799-827. https://doi.org/10.12989/cac.2014.13.6.799
- Patel, K.A., Bhardwaj, A., Chaudhary. S. and Nagpal, A.K. (2015), "Explicit expression for effective moment of inertia of RC Beams", Lat. Am. J. Solid Struct., 12(3), 542-560. https://doi.org/10.1590/1679-78251272
- Patel, K.A., Chaudhary. S. and Nagpal, A.K. (2014), "Analytical-numerical procedure incorporating cracking in RC beams", Eng. Comput., 31(5), 986-1010. https://doi.org/10.1108/EC-02-2013-0050
- Ramnavas, M.P., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2015), "Cracked span length beam element for service load analysis of steel concrete composite bridges", Comput. Struct., 157, 201-208. https://doi.org/10.1016/j.compstruc.2015.05.024
- Ruiz, M.F., Muttoni, A. and Gambarova, P.G. (2007), "Analytical modeling of the pre- and postyield behavior of bond in reinforced concrete", J. Struct. Eng., 133(10), 1364-1372. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1364)
- Sahamitmongkol, R. and Kishi, T. (2011), "Tension stiffening effect and bonding characteristics of chemically prestressed concrete under tension", Mater. Struct., 44(2), 455-474. https://doi.org/10.1617/s11527-010-9641-5
- Salys, D., Kaklauskas, G. and Gribniak, V. (2009), "Modelling deformation behaviour of RC beams attributing tension-stiffening to tensile reinforcement", Eng. Struct. Tech., 1(3), 141-147.
- Scanlon, A., Cagley Orsak, D.R. and Buettner, D.R. (2001), "ACI code requirements for deflection control: A critical review", ACI S.P, 203, 1-14.
- Shanmugam, N.E. and Baskar, K. (2003), "Steel-concrete composite plate girders subject to shear loading", J. Struct. Eng., 129(9), 1230-1242. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:9(1230)
- Shayanfar, M.A. and Safiey, A. (2008), "A new approach for nonlinear finite element analysis of reinforced concrete structures with corroded reinforcements", Comput. Concrete, 5(2), 155-174. https://doi.org/10.12989/cac.2008.5.2.155
- Smadi, M.M. and Belakhdar, K.A. (2007), "Nonlinear finite element analysis of high strength concrete slabs", Comput. Concrete, 4(3), 187-206. https://doi.org/10.12989/cac.2007.4.3.187
- Stramandinoli, R.S.B. and Rovere, H.L.L. (2008), "An efficient tension-stiffening model for nonlinear analysis of reinforced concrete members", Eng. Struct., 30(7), 2069-2080. https://doi.org/10.1016/j.engstruct.2007.12.022
- Thevendran, V., Shanmugam, N.E., Chen, S. and Richard Liew J.Y. (2000), "Experimental study on steelconcrete composite beams curved in plan", Eng. Struct., 22(8), 877-889. https://doi.org/10.1016/S0141-0296(99)00046-2
- Vollum, R.L., Afshar, N. and Izzuddin, B.A. (2008), "Modelling short-term tension stiffening in tension members", Mag. Concrete Res., 60(4), 291-300. https://doi.org/10.1680/macr.2007.00125
- Washa, G.W. and Fluck, P.G. (1956), "Plastic flow (creep*) of reinforced concrete continuous beams", ACI Struct. J., 52(1), 549-561.
- Yu, W.W. and Winter, G. (1960), "Instantaneous and long-time deflections of reinforced concrete beams under working loads", ACI J., 57(1), 29-50.
Cited by
- An element incorporating cracking for reinforced concrete skeletal structures at service load vol.20, pp.9, 2017, https://doi.org/10.1177/1369433216673642
- An automated computationally efficient two-stage procedure for service load analysis of RC flexural members considering concrete cracking vol.33, pp.3, 2017, https://doi.org/10.1007/s00366-016-0496-4
- Control of Tensile Stress in Prestressed Concrete Members Under Service Loads vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0266-3
- Rapid prediction of inelastic bending moments in RC beams considering cracking vol.18, pp.6, 2016, https://doi.org/10.12989/cac.2016.18.6.1113
- Neural network based approach for rapid prediction of deflections in RC beams considering cracking vol.19, pp.3, 2016, https://doi.org/10.12989/cac.2017.19.3.293
- Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors vol.64, pp.4, 2016, https://doi.org/10.12989/sem.2017.64.4.437
- Application of FE approach to deformation analysis of RC elements under direct tension vol.68, pp.3, 2016, https://doi.org/10.12989/sem.2018.68.3.345
- An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams vol.70, pp.6, 2019, https://doi.org/10.12989/sem.2019.70.6.751
- Development of a user-friendly and transparent non-linear analysis program for RC walls vol.25, pp.4, 2016, https://doi.org/10.12989/cac.2020.25.4.327
- Tensile behaviour of reinforced UHPFRC elements under serviceability conditions vol.54, pp.1, 2016, https://doi.org/10.1617/s11527-021-01630-z