• Title/Summary/Keyword: Tension cracks

Search Result 247, Processing Time 0.023 seconds

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

Post-yielding tension stiffening of reinforced concrete members using an image analysis method with a consideration of steel ratios

  • Lee, Jong-Han;Jung, Chi-Young;Woo, Tae-Ryeon;Cheung, Jin-Hwan
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • When designing reinforced concrete (RC) members, the rebar is assumed to resist all tensile forces, but the resistance of the concrete in the tension area is neglected. However, concrete can also resist tensile forces and increase the tensile stiffness of RC members, which is called the tension stiffening effect (TSE). Therefore, this study assessed the TSE, particularly after yielding of the steel bars and the effects of the steel ratio on the TSE. For this purpose, RC member specimens with steel ratios of 2.87%, 0.99%, and 0.59% were fabricated for uniaxial tensile tests. A vision-based non-contact measurement system was used to measure the behavior of the specimens. The cracks on the specimen at the stabilized cracking stage and the fracture stage were measured with the image analysis method. The results show that the number of cracks increases as the steel ratio increases. The reductions of the limit state and fracture strains were dependent on the ratio of the rebar. As the steel ratio decreased, the strain after yielding of the RC members significantly decreased. Therefore, the overall ductility of the RC member is reduced with decreasing steel ratio. The yielding plateau and ultimate load of the RC members obtained from the proposed equations showed very good agreement with those of the experiments. Finally, the image analysis method was possible to allow flexibility in expand the measurement points and targets to determine the strains and crack widths of the specimens.

Influence of high-cycle fatigue on the tension stiffening behavior of flexural reinforced lightweight aggregate concrete beams

  • Chen, How-Ji;Liu, Te-Hung;Tang, Chao-Wei;Tsai, Wen-Po
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.847-866
    • /
    • 2011
  • The objective of this study was to experimentally investigate the bond-related tension stiffening behavior of flexural reinforced concrete (RC) beams made with lightweight aggregate concrete (LWAC) under various high-cycle fatigue loading conditions. Based on strain measurements of tensile steel in the RC beams, fatigue-induced degradation of tension stiffening effects was evaluated and was, compared to reinforced normal weight concrete (NWC) beams with equal concrete compressive strengths (40 MPa). According to applied load-mean steel strain relationships, the mean steel strain that developed under loading cycles was divided into elastic and plastic strain components. The experimental results showed that, in the high-cycle fatigue regime, the tension stiffening behavior of LWAC beams was different from that of NWC beams; LWAC beams had a lesser reduction in tension stiffening due to a better bond between steel and concrete. This was reflected in the stability of the elastic mean steel strains and in the higher degree of local plasticity that developed at the primary flexural cracks.

Relation Between Uniaxial Tensile Test And Wear in Steels (강재의 단축인장 시험과 마모와의 관계)

  • 오흥국
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.25-33
    • /
    • 2000
  • The reorientations of the atoms by frictional shear deformation at the surface induce cracks at the boundary of the grain. The cracks grow and propagate in regions where the hydrostatic component of stress is least compressive because the compressive component restores the cracks by three-dimensional crystallizing $\pi$-bondings. The materials with Lder's band have very small amount of wear at the initial state. It suggests that initial frictional shear deformation be consumed to the formation of the Lder's band. The average wear amounts of the materials increase very steeply as the øu the stress-strain ratio at the ultimate point, decreases.

  • PDF

Two collinear Mode-I cracks in piezoelectric/piezomagnetic materials

  • Zhou, Zhen-Gong;Wang, Jia-Zhi;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.55-75
    • /
    • 2008
  • In this paper, the behavior of two collinear Mode-I cracks in piezoelectric/piezomagnetic materials subjected to a uniform tension loading was investigated by the generalized Almansi's theorem. Through the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations, in which the unknown variables were the jumps of displacements across the crack surfaces. To solve the triple integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials to obtain the relations among the electric displacement intensity factors, the magnetic flux intensity factors and the stress intensity factors at the crack tips. The interaction of two collinear cracks was also discussed in the present paper.

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

A Study on the Fatigue Growth Behavior of Surface Cracks -Prediction of Crack Aspect Ratio under the Constant Amplitude Tension Fatigue Loads- (표면균열의 피로성장거동연구 -인장 반복 하중하에서의 균열형상비 예측-)

  • 최용식;양원호;김재원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.43-50
    • /
    • 1990
  • The fatigue growth behavior of surface cracks cannot be adequately predicted solely by stress intensity factor analysis. This is caused by different plastic deformation due to variations in the stress field triaxiality along the crack tip. Therefore, a new model which accounts for the crack closure phenomenon is proposed in this paper to predict the fatigue crack growth patterns for surface cracks. Fatigue tests were performed to develop the new model for the prediction and to assess the accuracy of the analysis. The predicted crack growth behavior for PMMA and Aluminum alloy 7075-T6 materials agreed well with the experimental data.

  • PDF

Development of Automatic Tension Control and Fixing Device for An Automatic Manufacturing Process of A Vibrating Wire Sensor (진동현 센서 제작 공정 자동화를 위한 자동 장력 조절 및 접합 장치의 개발)

  • Go, Seok-Jo;Park, Jang-Sik;Yu, Ki-Ho;Kim, Seong-Won;Lee, Seung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.61-68
    • /
    • 2014
  • Constructing structures is the basic process requiring establishment of grounds. However, cracks due to sinking and distorting ground influence directly on the safety of structural health. Vibrating wire sensor measures the crack of structure by detecting the differences of wire tensions in analogue manner. In the previous production process, the tension is adjusted manually measuring the frequency of vibrating wire. Therefore, the accuracy of a sensor was depends on the skill level of labor. In this study, the automatic tension control and fixing devise is developed to enhance both accuracy and productivity. To evaluate the performance of the vibrating wire sensor, the nonlinearity of sensor is measured. The automatic tension control and fixing devise enhances the nonlinearity of the sensor from 0.398 to 0.056%. Therefore, the accuracy of the newly proposed method is successful.

A tension stiffening model for analysis of RC flexural members under service load

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.29-51
    • /
    • 2016
  • Tension-stiffening is the contribution of concrete between the cracks to carry tensile stresses after cracking in Reinforced Concrete (RC) members. In this paper, a tension-stiffening model has been proposed for computationally efficient nonlinear analysis of RC flexural members subjected to service load. The proposed model has been embedded in a typical cracked span length beam element. The element is visualized to consist of at the most five zones (cracked or uncracked). Closed form expressions for flexibility and stiffness coefficients and end displacements have been obtained for the cracked span length beam element. Further, for use in everyday design, a hybrid analytical-numerical procedure has been developed for nonlinear analysis of RC flexural members using the proposed tension-stiffening model. The procedure yields deflections as well as redistributed bending moments. The proposed model (and developed procedure) has been validated by the comparison with experimental results reported elsewhere and also by comparison with the Finite Element Method (FEM) results. The procedure would lead to drastic reduction in computational time in case of large RC structures.

Application of FE approach to deformation analysis of RC elements under direct tension

  • Jakubovskis, Ronaldas;Kupliauskas, Rimantas;Rimkus, Arvydas;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.345-358
    • /
    • 2018
  • Heterogeneous structure and, particularly, low resistance to tension stresses leads to different mechanical properties of the concrete in different loading situations. To solve this problem, the tension zone of concrete elements is reinforced. Development of the cracks, however, becomes even more complicated in the presence of bar reinforcement. Direct tension test is the common layout for analyzing mechanical properties of reinforced concrete. This study investigates scatter of the test results related with arrangement of bar reinforcement. It employs results of six elements with square $60{\times}60mm$ cross-section reinforced with one or four 5 mm bars. Differently to the common research practice (limited to the average deformation response), this study presents recordings of numerous strain gauges, which allows to monitor/assess evolution of the deformations during the test. A simple procedure for variation assessment of elasticity modulus of the concrete is proposed. The variation analysis reveals different deformation behavior of the concrete in the prisms with different distribution of the reinforcement bars. Application of finite element approach to carefully collected experimental data has revealed the effects, which were neglected during the test results interpretation stage.