• Title/Summary/Keyword: Tension crack

Search Result 656, Processing Time 0.024 seconds

Structural Performance of Pre-tensioned Half-depth Precast Panels (프리텐션 반두께 바닥판을 갖는 바닥판의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1707-1721
    • /
    • 2014
  • Half-depth panels were developed with the merits of CIP (Cast In Place) decks and precast decks for constructability and fast construction. In this paper, details of half-depth panels with pre-tensioning were suggested. For evaluation of structural performance, five half-depth panel specimens were fabricated and static tests were conducted. The cross-sections of these specimens were composed of pre-tensioned half-depth panels and pre-tensioned two-span half-depth panels. Test parameters were the amount of the prestressing force and the longitudinal reinforcements. Static tests on simply-supported slabs showed that ultimate strength was 1.55 times greater than calculated nominal strength. The flexural strength was only 10 % increased and the influence on crack width control was negligible when the member of tendons was increased twice. For two-span continuous specimens, the ultimate strength increased 1.2 times and 1.38 times respectively as the reinforcement was additionally provided. The verified half-depth panels by this research can be effectively utilized for the fast replacement or construction of bridges.

Effects of Fiber Blending Condition and Expansive Admixture Replacement on Tensile Performance of Rebar Lap Splice in Strain-Hardening Cement-Based Composites (SHCCs) (섬유혼입조건 및 팽창재 대체에 따른 변형 경화형 시멘트 복합체 내의 철근 겹침이음 성능)

  • Ryu, Seung-Hyun;Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • This paper is a report about lap splice performance of rebar embedded in the strain-hardening cement-based composites (SHCCs) under monotonic and repeated tension loading. Ten mix proportions of cement-based composites such as SHCCs and normal concrete were investigated. The study parameters are comprised of (1) types of reinforcing fibers (polyethylene and steel fiber), (2) replacement levels of expansive admixture (EXA, 0% and 10%), and (3) compressive strength (30 and 100 MPa) of cement-based composites. Lap splice lengths (ld) of rebars in SHCC materials and normal concrete were 60% and 100% of splice length calculated by code requirements for structural concrete, respectively. Test results indicated that SHCCs materials can lead to enhancements in the lap splice performance of embedded rebar. All of the fiber reinforcement conditions (PE-SHCC and PESF-SHCC) considered in this study produced considerable improvements in the tensile strength, cracking behavior, and bond strength of lap-spliced rebar. Furthermore, adding EXA to SHCC matrix improved the tensile lap splice performance of rebar in SHCC materials. However, for controlling crack behavior, the performance of PE-SHCC was better than that of PESF-SHCC due to its mechanical properties. This study demonstrated an effective approach for reducing required development length of lap spliced rebar by using SHCC materials.

Performance Evaluation of a New Buried Expansion Joint (새로운 매설형 신축이음장치의 성능 평가)

  • Hong, Seong-Hyeop;Park, Sang-Yeol;Jwa, Yong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • Asphalt Plug Joint(APJ) is an buried expansion joint that enabling the smooth connection of expansion gap and road pavement by filling the gap with bituminous mixture of 20% bitumen and 80% aggregate by weight, so it secures evenness and expansion or contraction using the material's properties. Although APJ is designed to have a 6-7 year lifecycle, there are some cases where it is damaged within the first six months. This early damage cause traffic congestion due to frequent repair works, and social cost exceeding the installation cost of the joint. So, in this research, we have developed a new system of Buried Folding Lattice Joint(BFLJ) which can overcome the disadvantages of APJ, and have analyzed and compared it's performance with the conventional APJ through experiment with specimens. As a result of the experiment, APJ had crack formation on both ends of the gap plate, spreading to the surface of the expansion joint. With this result, we can conclude that the reason for early damage is the tension failure due to the concentration of strain in the asphalt mixture along the end of gap plate and the debonding along the joint section. In contrast, the newly developed BFLJ induced even transformation in the joint by applying moving stud and high performance material, and resolved APJ's disadvantage of strain concentration. Therefore, it could be seen that the newly developed BFLJ could overcome the disadvantages of APJ and prevent early damage.

Flexural Experiments on Reinforced Concrete Beams Strengthened with SHCC and Special Reinforcements (SHCC와 특수 보강근으로 보강된 철근콘크리트 보의 휨 성능 실험)

  • Chang-Jin Hyun;Ji-Seok Seo;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2023
  • In this paper, we evaluated the flexural performance of three types of reinforced concrete beams (SHCC-RB, SHCC-SB, SHCC-FRP) strengthened with ordinary steel rebar, very high strength (super strength) rebar, and FRP bars together with strain-hardening cement composite (SHCC). For this purpose, a series of beam specimens were manufactured and four-point load bending experiments were performed. As a result of the experiment, all specimens strengthened with SHCC exhibited tightly controlled flexural microcrakcs with the crack width of less than 100 ㎛. This is mostly due to the material properties of SHCC showing tensile strain hardening properties with multiple microcracks under uniaxial tension. The specimen SHCC-FRP showed lower initial cracking moment and yield flexural strength than SHCC-RB, whereas the maximum flexural strength of SHCC-FRP was superior to that of SHCC-RC. This is because the tensile strength of FRP bars is higher than that of ordinary steel reabr. The initial cracking moment of the beam specimen SHCC-SB was similar to that of SHCC-RB, but the yield flexural strength and maximum flexural strength of SHCC-SB were evaluated to be the highest.

A Case Study on the Cause Analysis of Land creep Using Geophysical Exploration (물리탐사를 활용한 땅밀림 원인분석의 사례적 연구)

  • Jae Hyeon Park;Gyeong Mi Tak;Kook Mook Leem
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.382-392
    • /
    • 2023
  • Recent reports have indicated a rapid increase in the frequency of sediment disasters due to climate change and other changes in the geological environment. Given this alarming situation and the recent increase in the frequency of land creep in Korea, systematic and efficient recovery and management of land creep areas is essential. The purpose of this study is to identify disaster vulnerability by conducting a physical exploration of land creep in San 4-1, Jayeon-ri, Gaegun-myeon, Yangpyeong-gun, Gyeonggi-do, and examine stability by identifying the overall geological structure of the affected ground. In addition, drilling surveys are conducted to verify the reliability of the measured data. The results of the study reveal that low specific resistance abnormalities are distributed in the upper part of the soil layer and weathering zone and that this section is a 50-120 m exploration line. It is also confirmed to be a low-hardness ground area where tensile cracks are observed. Therefore, there is a need for research focused on developing measures to reduce economic and social damage within the domestic context by continuously monitoring indicators of land creep and identifying land creep risks.

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.