• 제목/요약/키워드: Tension angle

검색결과 402건 처리시간 0.031초

기존/개선 수치 해석 기법을 이용한 계류 체인 링크의 면외 굽힘 강성 (Out-Of-Plane Bending Stiffnesses in Offshore Mooring Chain Links Based on Conventional and Advanced Numerical Simulation Techniques)

  • 정준모;이재빈;김영훈
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.297-309
    • /
    • 2018
  • After an accident involving mooring link failures in an offloading buoy, verification of the fatigue safety in terms of the out-of-plane bending (OPB) and in-plane bending (IPB) moments has become a key engineering item in the design of various floating offshore units. The mooring links for an 8 MW floating offshore wind turbine were selected for this study. To identify the OPB stiffness (OPB moment versus interlink angle), a numerical simulation model, called the 3-link model, is usually composed of three successive chain links closest to the fairlead or chain hawse. This paper introduces two numerical simulation techniques for the 3-link analyses. The conventional and advanced approaches are both based on the prescribed rotation approach (PRA) and direct tension approach (DTA). Comparisons of the nominal stress distributions, OPB stiffnesses, hotspot stress curves, and stress concentration curves are presented. The multiple link analyses used to identify the tension angle versus interlink angle require the OPB stiffness data from the 3-link analyses. A convergence study was conducted to determine the minimum number of links for a multi-link analysis. It was proven that 10 links were sufficient for the multi-link analysis. The tension angle versus interlink angle relations are presented based on multi-link analyses with 10 links. It was found that the subsequent results varied significantly according to the 3-link analysis techniques.

시뮬레이션에 의한 유체 유동 파이프 계의 곡관부의 각도 변화에 따른 고유진동수 고찰 (A Simulation for the Natural Frequencies of Curved Pipes Containing Fluid Flow with Various Elbow Angles)

  • 최명진;장승호
    • 한국시뮬레이션학회논문지
    • /
    • 제10권1호
    • /
    • pp.63-65
    • /
    • 2001
  • To investigate the natural frequencies of curved piping systems with various elbow angles conveying flow fluid, a simulation is performed considering Initial tension due to the inside fluid. The system is analyzed by finite element method utilizing straight beam element. Elbow part is meshed using 4 elements, and the initial tension is considered by inserting equivalent terms into the stiffness matrix. Without considering the initial tension, the system becomes unstable, that is, the fundamental natural frequency approaches to zero value fast, as the flow velocity reaches critical value. With the initial tension terms, the system becomes stable where there is no abrupt decrease of the fundamental natural frequency. The change rate of the natural frequency with respect to the flow velocity reduces. As elbow angle increases, the system becomes stiffer, then around 150 degrees of the elbow angle the natural frequency has the largest value, the value decreases after the angle of the largest natural frequency. When angle is between 170 degrees and 179 degrees, the natural frequency is very sensitive. This means that small change of angle results in great change of natural frequency, which is expected to be utilized in the control of the natural frequency of the piping system conveying flow fluid.

  • PDF

면내외 굽힘 효과를 고려한 최대 주응력 기반 계류 체인 피로 평가 기법 개발 (A Novel Procedure for Mooring Chain Fatigue Prediction based on Maximum Principal Stress Considering Out-of-Plane and In-Plane Bending Effects)

  • 정준모;한승오
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.237-248
    • /
    • 2016
  • As OPB and IPB moment-induced fatigue damage on mooring chain links were reported for a offloading buoy, verification of OPB and IPB fatigue has been a key engineering item in offshore structure mooring design. Mathematical and physical features of the conventional approach which was mainly explained in BV guideline are reviewed and disadvantages of the conventional approach are addressed in terms of stress proportionality and nonlinearity of OPB and IPB moments. In order to eradicate these disadvantages, a novel approach is newly proposed which is able to dispel apprehension on stress proportionality and is not dependent of nonlinearities of OPB and IPB moments. Significant differences between two approaches are suggested by comparing relations of OPB moment versus OPB interlink angle and IPB moment versus IPB interlink angle. For periodic OPB tension angle processes having three different OPB angle ranges with a simple irregular tension process, fatigue damage calculation reveals that OPB moment-induced fatigue damage has dominant portion to total fatigue damage. Comparative studies between two approaches also show that the conventional approach based on BV guideline predicts fatigue damage far conservatively since it assume unrealistic high stress concentration factor for tension load. Meanwhile IPB moment-induced fatigue damage is negligible compared to tension-induced fatigue damage.

In-plane and out-of-plane bending moments and local stresses in mooring chain links using machine learning technique

  • Lee, Jae-bin;Tayyar, Gokhan Tansel;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.848-857
    • /
    • 2021
  • This paper proposes an efficient approach based on a machine learning technique to predict the local stresses on mooring chain links. Three-link and multi-link finite element analyses were conducted for a target chain link of D107 with steel grade R4; 24,000 and 8000 analyses were performed, respectively. Two serial Artificial Neural Network (ANN) models based on a deep multi-layer perceptron technique were developed. The first ANN model corresponds to multi-link analyses, where the input neurons were the tension force and angle and the output neurons were the interlink angles. The second ANN model corresponds to the three-link analyses with the input neurons of the tension force, interlink angle, and the local stress positions, and the output neurons of the local stress. The predicted local stresses for the untrained cases were reliable compared to the numerical simulation results.

The Effect of Forward Head Posture and Tension Type Headache on Neck Movement: For Office Worker

  • Kim, In-Gyun;Lee, Sang-Yeol
    • The Journal of Korean Physical Therapy
    • /
    • 제30권4호
    • /
    • pp.108-111
    • /
    • 2018
  • Purpose: This study examined the effects of the forward head posture and tension type headache on neck movement among office workers. Methods: The subjects were 6 male and 21 female patients composed of a forward head posture group, forward head posture group with a tension type headache and a normal group. Each group consisted of 2 males and 7 females. The cranio-vertebral angle of the head and the angle of motion of the neck were measured. SPSS 23.0 was used for data analysis and one-way ANOVA was performed for the mean comparison of the neck movements in the three groups. Results: The participants had a limitation in the movement of all necks between the forward head posture group and forward head posture with tension type headache group compared to the normal subjects. The forward head posture with tension headache group had limited neck extension and lateral bending compared to the forward head posture group. Conclusion: Office workers have limitations in the movement of the neck when they are accompanied by forward head posture and tension headache. In particular, when accompanied with a tension headache, there is a restriction on the neck extension and side bending. This study is expected to provide basic data for the relief of tension headache and the treatment of forward head posture in office workers.

슬링 운동 시 착용한 목보조기가 긴장성 두통을 가진 전방 머리 자세가 있는 성인의 근긴장도와 두통에 미치는 영향: 무작위 대조 예비연구 (Effect of Sling Exercise Wearing a Neck Orthosis on Muscle Tension and Headache in Adults with Forward Head Posture and Tension Headache: A Randomized, Controlled, Preliminary Study)

  • 오은별;김태우;홍유진;류전남;박상영;차용준
    • 대한물리의학회지
    • /
    • 제18권4호
    • /
    • pp.145-154
    • /
    • 2023
  • PURPOSE: This study was conducted to investigate the effect of the sling exercise wearing a neck orthosis on the craniovertebral angle, muscle tension, and headaches in adults with a forward head posture and tension headache. METHODS: In this single-blinded, randomized, controlled, comparative study, a total of 22 adults with forward head postures and tension headaches were randomly assigned to the experimental group (sling exercise wearing a neck orthosis, n = 11) or the control group (sling exercise without a neck orthosis, n = 11). All participants undertook the sling exercise program (3×/week for 4 weeks). The craniovertebral angle, muscle tension, and headache were measured before and after the 4-week training. RESULTS: Significant improvements were observed in the craniovertebral angle, muscle tension, and headache in the experimental group (p < .05). This group also showed a larger decrease in the muscle tension and headache (upper trapezius, -4.97 Hz vs -1.70 Hz, p < .05; splenius capitis, -5.44 Hz vs -2.54 Hz, p < .05; headache, -19.73 score vs -14.64 score, p < .05, respectively). CONCLUSION: The sling exercise wearing a neck orthosis could be an effective way to relieve the symptoms caused by a forward head posture. It could also be a more effective way of decreasing muscle tension and headaches than the sling exercise without wearing a neck orthosis.

크롤러 크레인에서 붐의 처짐을 고려한 러핑와이어 장력과 전도모멘트 사이의 관계식 보정 (Compensation of Relation Formula between Luffing Wire Tension and Overturning Moment in a Crawler Crane Considering the Deflection of Boom)

  • 장효필;한동섭
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.44-49
    • /
    • 2011
  • The crawler crane, which consists of a lattice boom, a driving system, and movable vehicle, is widely used in a construction site. It needs to be installed an overload limiter to prevent the overturning accident and the fracture of structure. This research is undertaken to provide the relation formula for designing the overload limiter as follows: First the relation formulas between the wire-rope tension and the hoisting load or the overturning ratio according to the luffing angle and length of a lattice boom are established. Secondly the derived formulas are corrected by using the compensated angle considering the deflection of boom through the finite element analysis. The stiffness analysis is carried out for 30-kinds of models as a combination of 6-kinds of luffing angle and 5-kinds of length of boom. Finally the shape design of a stick type load cell, which is the device to measure the wire-rope tension, is performed. 5-kinds of notch radius and 5-kinds of center hole radius are adopted as the design parameter for the strength analysis of the load cell.

다점계류식 FPSO의 해양환경별 계류선 각도와 최대 장력에 대한 연구 (Mooring Layout Angle and Maximum Tension for Spread Moored FPSOs in Various Metocean Conditions)

  • 박성부;이승재;정윤석;이민경;정광효
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.253-259
    • /
    • 2016
  • This study demonstrates the result of mooring analysis for five spread-moored FPSOs having different length-to-breadth (L/B) ratios from 4.5–6.5. FPSOs are subjected to four metocean conditions, ones from the Gulf of Mexico (Hurricane/Loop current condition), West Africa, Nigeria, and Brazil Campos Basin, which are amongst the most typical offshore oil and gas fields. With change in design parameters of OBA (Outer bundle angle) and IBA (Inner bundle angle) combinations, a change in the line tension is demonstrated and the OBA-IBA combinations having the smallest line tension are presented for each L/B ratio and sea, respectively. This study is expected to influence the preliminary design layout of an FPSO spread-mooring system as a function of the L/B ratio and metocean conditions.

평면 변형 조건에서 일축 인장력을 받는 금속 재료의 불연속 변위 각에 대한 연구 (A Study on the Angle of Localization of a Metal Specimen under Uniaxial Tension with Plane Strain Condition)

  • 박재균;김미림
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.275-281
    • /
    • 2011
  • 일반적으로 인장 시험에 주로 사용되는 납작한 형태의 금속 재료에 천천히 인장력을 가하고 그 힘을 증가시키면 어느 순간에 루더스 밴드(Luders band)라고 불리는 소성 변형의 띠가 갑자기 발생한다. 이 띠들은 일정 각도를 가지고 평행하게 발생하며, 여러 연구자들에 의해 특정 경계조건에 대하여 이 띠가 발생하는 조건과 그 각도에 대한 많은 연구가 선행되어 왔다. 본 연구에서는 평면 응력 조건에서 이루어진 Thomas(1961)의 연구를 기반으로 하고 $J_2$ 소성 변형 조건, 힘의 평형방정식, 그리고 구성방정식을 이용하여 평면 변형 조건에서 발생하는 밴드의 각도를 해석적으로 유도하였다. 이 결과는 음향텐서를 이용한 기존의 연구 결과와 일치함을 확인하였다.

장력제어를 위한 게인 스케줄링 (Gain Scheduling for Tension Control)

  • 이동욱;박성한;안병준;이만형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.505-509
    • /
    • 2002
  • The looper control of hot strip finishing mill is one of the most important control item In hot strip rolling mill process. Loopers are placed between finishing mill stands and control the mass flow of the two stands. Another important action of the looper is to control the strip tension which influences on the width of the strip. So it is very important to control both the looper angle and the strip tension simultaneously but the looper angle and the strip tension are strongly interacted by each other. The gain scheduling is to break the control design process into two steps. First, one designs local linear controllers based on linerizations of the nonlinear system at several different operating conditions. Second, a global nonlinear controller for the nonlinear system is obtained by interpolating.

  • PDF