• Title/Summary/Keyword: Tension Response

Search Result 567, Processing Time 0.03 seconds

Effects of Shihogigiltang(柴胡枳桔湯) extracts on the contraction of isolated guinea pig trachea smooth muscle (시호지길탕(柴胡枳桔湯)이 GUINEA PIG의 기관지평활근(氣管支平滑筋)에 미치는 영향(影響))

  • Lee, Min-Seop
    • The Journal of Internal Korean Medicine
    • /
    • v.13 no.1
    • /
    • pp.34-45
    • /
    • 1992
  • This study was carried out to investigate the effect of Shihogigiltang extract on the contractile force of the isolated guinea pig trachea smooth muscle and elucidate its mechanism. The results were obtained as follows: 1. The isolated trachea smooth muscle was suspended in the organ bath with oxygenated Kreb's Henseleit bicarbonate buffer solution at $37^{\circ}C$, and the developed tension by the drug was recorded with isometric transducer(Nacro F-60). The resting tension was approximately 0.5g. 2. The trachea smooth muscle of the isoiated guinea pig was significantly relaxed by the administration of Shihogigiltang extract. 3. ShihogigiItang significantly inhibited the contractile response of histamine 10-4 M is isolated guinea pig trachea smooth muscle. 4. The contractile response of the trachea smooth muscle of the isolated guinea pig by acetylcholine 10-4 M was significantly inhibited by Shihogigiltang extract. 5. The contractile response of the trachea smooth muscle of the isolated guinea pig by 5-hydorxytryptamine 10-4 M was significantly inhibited by Shihngigiltang extract. 6. The contractile response of the trachea smooth muscle of the isolated guinea pig by prostaglandin $F2\;{\alpha}$ 10-7 M was significantly inhibited by Shihngigiltang extract.

  • PDF

Analysis of the Transient Dynamic Response of Ocean Mining Pipe System Due to Impulse (임펄스 가진에 의한 근해역 통합채광시험 양광시스템의 파이프 동적 과도응답 해석)

  • Cho, Kyu-Nam;Kim, Min;Park, Yong-Chan;Yoon, Chi-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 2007
  • A finite element analysis scheme is proposed to assess the dynamic response due to impulse excitation of ocean mining pipe system. Transient dynamic response analysis based on the proposed scheme was carried out for various types of impulses, and the magnitude of cable tension induced by impulse was discussed by using a model of 'Segero', a special purpose ship of KT-Submarine as well as ROV carrier 'Onnuri' A qualitative, prospective guideline for the relevant marine operation is obtained.

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.

A Dynamic structural response analysis of tension leg platforms in current and waves (조류와 파랑 중에서의 TLP의 동적구조응답해석)

  • Lee, S.C.;Goo, J.S.;Ha, Y.R.;Jo, H.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.65-71
    • /
    • 2012
  • A numerical procedure is described for predicting the dynamic structural responses of tension leg platforms(TLPs) in current and waves. The developed numerical approach is based on a combination of the three dimensional source distribution method and the dynamic structural analysis method, in which the superstructure of the TLPs is assumed to be flexible instead of rigid. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the dynamic structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the origin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. The dynamic structural responses of a TLP were analyzed in the case of including the current or not including the one in waves and the effects of current on the TLP were investigated.

Estimation of Cable Tension Force by ARX Model-Based Virtual Sensing (ARX모델기반 가상센싱을 통한 사장교 케이블의 장력 추정)

  • Choi, Gahee;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.287-293
    • /
    • 2017
  • Sometimes, it is impossible to install a sensor on a certain location of a structure due to the size of a structure or poor surrounding environments. Even if possible, sensors can be frequently malfunctioned or improperly operated due to lack of adequate maintenance. These kind of problems are solved by the virtual sensing methods in various engineering fields. Virtual sensing technology is a technology that can measure data even though there is no physical sensor. It is expected that this technology can be also applied to the construction field effectively. In this study, a virtual sensing technology based on ARX model is proposed. An ARX model is defined by using the simulated data through a structural analysis rather than by actually measured data. The ARX-based virtual sensing model can be applied to estimate unmeasured response using a transfer function that defines the relationship between two point data. In this study, a simulation and experimental study were carried out to examine the proposed virtual sensing method with a laboratory test on a cable-stayed model bridge. Acceleration measured at a girder is transformed to estimate a cable tension through the ARX model-based virtual sensing.

Analytical investigation of thin steel plate shear walls with screwed infill plate

  • Vatansever, Cuneyt;Berman, Jeffrey W.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1145-1165
    • /
    • 2015
  • A behavior model for screw connections is developed to provide a better representation of the nonlinear response of thin steel plate shear walls (TSPSWs) with infill plates attached to the boundary frame members via self-drilling screws. This analytical representation is based on the load-bearing deformation relationship between the infill plate and the screw threads. The model can be easily implemented in strip models of TSPSWs where the tension field action of the infill plates is represented by a series of parallel discrete tension-only strips. Previously reported experimental results from tests of two different TSPSWs are used to provide experimental validation of the modeling approach. The beam-to-column connection behavior was also included in the analyses using a four parameter rotational spring model that was calibrated to a test of an identical frame as used for the TSPSW specimens but without the infill plates. The complete TSPSW models consisting of strips representing the infill plates, zero length elements representing the load-bearing deformation response of the screw connection at each end of the strips and the four parameter spring model at each beam-to-column connection are shown to have good agreement with the experimental results. The resulting models should enable design and analysis of TSPSWs for both new construction and retrofit of existing buildings.

Effect of Changes in Vocal Fold Tension on Mucosal Wave

  • Yumoto, Eiji
    • Proceedings of the KSLP Conference
    • /
    • 1998.11a
    • /
    • pp.210-210
    • /
    • 1998
  • Vocal fold vibration is essentially the propagation of a mucosal wave, starting from the lower surface of the vocal fold. The mucosal upheaval (MU), where the mucosal wave starts and propagates upward, appears only when the vocal fold vibrates. We investigated the location of the mucosal upheaval in response In variations in vocal fold tension. Vibrations were elicited under three conditions: during bilateral thyroarytenoid (TA) muscle contraction, without TA muscle contraction and during vocal fold lengthening. TA muscle contraction was obtained by direct electrical stimulation of the muscle. The vocal fold was lengthened by cricothyroid (omitted)

  • PDF

CALCIUM AND PHOSPHOROUS DISTRIBUTIONS IN THE ALVEOLAR BONE OF ORTHODONTICALLY TREATED CATS (교정력에 의한 고양이 치조골의 칼슘 및 인의 분포에 관한 연구)

  • Kim, Hye Kyoung;Lee, Jong Heun;Yang, Wan Sik
    • The korean journal of orthodontics
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 1981
  • This experiment was performed to investigate the response of inorganic substances in alveolar bone in relation to the experimental tooth movement. Right canine in maxillary jaw was tipped in cats by coil springs generating 80 gm. force, in mandibular jaw, the force was 100 gm. force. Cats were divided into five groups and orthodontically treated for one hour, 1, 7, 14 and 28 days, respectively. Alveolar bone samples were obtained from tension and compression sites as well as from contralateral control sites. The level of calcium of alveolar bone was determined by atomic absorption spectrophotometry and inorganic phosphorus was measured by spectrophotometry. The results obtained were as follows: 1. In tension and compression site of maxillary alveolar bone, calcium levels were decreased at 1, 7 and 14 days, but recovered at 28 days. 2. The levels of inorganic phosphorus in compression site of maxillary alveolar bone had little change but in tension site of maxillary alveolar bone , phosphorous levels were decreased, 3. Calcium levels in tension and compression site of mandibular alveolar bone were decreased, especially at 28 days. 4. In tension and compression site of mandibular alveolar bone, inorganic phosphorus were slightly decreased from 1 day.

  • PDF

Application of FE approach to deformation analysis of RC elements under direct tension

  • Jakubovskis, Ronaldas;Kupliauskas, Rimantas;Rimkus, Arvydas;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.345-358
    • /
    • 2018
  • Heterogeneous structure and, particularly, low resistance to tension stresses leads to different mechanical properties of the concrete in different loading situations. To solve this problem, the tension zone of concrete elements is reinforced. Development of the cracks, however, becomes even more complicated in the presence of bar reinforcement. Direct tension test is the common layout for analyzing mechanical properties of reinforced concrete. This study investigates scatter of the test results related with arrangement of bar reinforcement. It employs results of six elements with square $60{\times}60mm$ cross-section reinforced with one or four 5 mm bars. Differently to the common research practice (limited to the average deformation response), this study presents recordings of numerous strain gauges, which allows to monitor/assess evolution of the deformations during the test. A simple procedure for variation assessment of elasticity modulus of the concrete is proposed. The variation analysis reveals different deformation behavior of the concrete in the prisms with different distribution of the reinforcement bars. Application of finite element approach to carefully collected experimental data has revealed the effects, which were neglected during the test results interpretation stage.

Modeling and Identification of Web Tension Control System with Dancer Roll (댄서롤이 장착된 웹 장력 제어시스템의 모델링 및 규명)

  • Lee, Sang-Hwa;Lee, Jeh-Won;Lee, Hyuk-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.70-76
    • /
    • 2009
  • Web tension control system recently have been applied to OLED(Organic Light-Emitting Diode), RFID of flexible material, e-Paper and PLED(Polymeric LED) and various web control algorithms have being developed for higher productivity and product quality These system need an accuracy model to design and implement controller. In this paper, the web tension control system with dancer roll is mathematically modeled. Mathematical model consists of 8 subsystems and each subsystems can be described as impedance structure which connected by velocity and tension. Mathematical model is different from the estimated model at high frequency range because of structure dynamics which is ignored on mathematical model. The estimated model is derived using ARMAX model. The controller is designed using the estimated model. The step response of the estimated model are compared with that of physical model for a validation of estimated model. The experimental results show a good match between them.