• 제목/요약/키워드: Tensile-shear strength

Search Result 816, Processing Time 0.027 seconds

A Study on the Spot Weldability of Automotive Steel Sheets (자동차용 도금강판의 점용접성에 관한 연구)

  • 민준기;오영근;김광수
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.41-47
    • /
    • 1996
  • The spot weldability of coated steels for automobile has been investigated. Coated steels of SPC-Zn DC, SPC Zn-Ni SC, SPC Zn-Ni DC, SPC Zn-Fe DC and OCCS were welded under different conditions of welding current, force and time. Coating thickness at the welded surface was reduced as increased welding current. Tensile shear strength(TSS) and cross tensile strength (CTS) were increased up to expulsion began, then dropped as increased current. Optimum conditions of welding force and time were different, however 200~250kgf and 15~20cycle were optimum for coated SPC (Steel Plate Cold). Weldability lobes were measured for each coated steel and they showed narrow range of working welding current. The organic composite coated steel (OCCS) had the highest current to get $\sqrt5{t}$ nugget size and narrowest working welding current range.

  • PDF

Strength properties of lime stabilized and fibre reinforced residual soil

  • Okonta, Felix N.;Nxumalo, Sinenkosi P.
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 2022
  • The effect of discrete polypropylene fibre reinforcement on shear strength parameters, tensile properties and isotropic index of stabilized compacted residual subgrade was investigated. Composites of compacted subgrade were developed from polypropylene fibre dosage of 0%, 1%, 2.5% and 4% and 3% cement binder. Saturated compacted soil benefited from incremental fibre dosage, the mobilized friction coefficient increased to a maximum at 2.5% fibre dosage from 0.41 to 0.58 and the contribution due to further increase in fibre dosage was marginal. Binder stabilization increased the degree of isotropy for unreinforced soil at lower fibre dosage of 1% and then decreased with higher fibre dosage. Saturation of 3% binder stabilized soil decreased the soil friction angle and the degree of isotropy for both unstabilized and binder stabilized soil increased with fibre dosage. The maximum tensile stress of 3% binder stabilized fibre reinforced residual soil was 3-fold that of 3% binder stabilized unreinforced soil. The difference in computed and measured maximum tensile and tangential stress decreased with increase in fibre dosage and degree of stabilization and polypropylene fibre reinforced soil met local and international criteria for road construction subgrade.

Numerical simulations of fracture shear test in anisotropy rocks with bedding layers

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Nejati, Hamid Reza
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.241-247
    • /
    • 2019
  • In this paper the effect of bedding layer on the failure mechanism of rock in direct shear test has been investigated using particle flow code, PFC. For this purpose, firstly calibration of pfc2d was performed using Brazilian tensile strength. Secondly direct shear test consisting bedding layer was simulated numerically. Thickness of layers was 10 mm and rock bridge length was 10 mm, 40 mm and 60 mm. In each rock bridge length, bedding layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Totally 21 models were simulated and tested. The results show that two types of cracks develop within the model. Shear cracks and tensile cracks. Also failure pattern is affected by bridge length while shear strength is controlled by failure pattern. It's to be noted that bedding layer has not any effect on the failure pattern because the layer interface strength is too high.

Predicting shear strength of SFRC slender beams without stirrups using an ANN model

  • Keskin, Riza S.O.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.605-615
    • /
    • 2017
  • Shear failure of reinforced concrete (RC) beams is a major concern for structural engineers. It has been shown through various studies that the shear strength and ductility of RC beams can be improved by adding steel fibers to the concrete. An accurate model predicting the shear strength of steel fiber reinforced concrete (SFRC) beams will help SFRC to become widely used. An artificial neural network (ANN) model consisting of an input layer, a hidden layer of six neurons and an output layer was developed to predict the shear strength of SFRC slender beams without stirrups, where the input parameters are concrete compressive strength, tensile reinforcement ratio, shear span-to-depth ratio, effective depth, volume fraction of fibers, aspect ratio of fibers and fiber bond factor, and the output is an estimate of shear strength. It is shown that the model is superior to fourteen equations proposed by various researchers in predicting the shear strength of SFRC beams considered in this study and it is verified through a parametric study that the model has a good generalization capability.

Shear Strength of lnconel Tube Welded with Pulsed Nd:YAG Laser (펄스형 Nd:YAG레이저로 용접된 Inconel Tube의 전단강도)

  • Chang, W.;Kim, J. D.;Chung, J. M.;Kim, C. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.125-128
    • /
    • 1995
  • The remote sleeve repair-welding technology using the pulsed Nd:YAG laser for increasing the lifetime of the steam generator tube in the nuclear power plant has been developed. The laser welding has many advantages on deep penetration depth and narrow heat affect zone(HAZ). The inconel 600 tube and inconel 690 sleeve used high temperature and high pressure service have been welded as round lap welds. It is found that the relation between the connection width and welding parameters. It is found that the shear strength in proportion to the connection width by conducting tensile-shear tests.

  • PDF

Prediction of Tensile Strength of Wet Sand (II) : Validation (습윤 모래에서 인장강도의 예측 (II) : 검증)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.37-44
    • /
    • 2008
  • At low normal stress levels, tensile strength of sand characteristically varies with either saturation or suction of soil in an up-and-down manner with a peak tensile strength that can occur at any degree of saturation. A theory that accurately predicts tensile strength of wet sand was presented in the previous study. In this study, the results of uniaxial tensile, suction-saturation and direct shear tests obtained from three sands (Esperance sand from Seattle, Washington, clean sand from Perth, Australia, and Ottawa sand) are used to validate the proposed theory. The closed form expression of the proposed theory can predict well the experimental data obtained from these sands in terms of the variation patterns of tensile strength over the entire saturation regimes, the magnitude of the tensile strength, its peak value, and the corresponding degree of saturation when the peak strength occurs.

An Experimental Study on Local Stability of Eco-block (생태축조블록의 국부적 안정성에 관한 실험적 연구)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2866-2871
    • /
    • 2011
  • In this study, computation method of tensile load which develops in tie-bar of reinforced earth, connection strength between tie-bar and eco-block and shear strength of the interface between two eco-blocks were verified by experiments. According to the test results of connection strength test, peak tensile load of D13 deformed bar were close to allowable tensile load of it for situation of infill with soil. Connection strengths of D10 and D13 deformed bars were greater than the allowable tensile load of those respectively for situation of infill with concrete. According to the test results of shear strength of the interface between two eco-blocks, shear resistance parameters, ${\alpha}_u$ and ��${\lambda}_u$ were evaluated as 1.7kN/m and 2$27.6^{\circ}$ respectively.

An experimental study on the fracture of Nd:YAG laser welded amorphous foils (Nd:YAG 레이저를 이용한 비정질 박판 용접부의 파괴에 대한 실험적 연구)

  • 이건상
    • Laser Solutions
    • /
    • v.3 no.3
    • /
    • pp.31-37
    • /
    • 2000
  • In this paper, the possibilities of the laser overlap spot welding were studied to utilize the advantageous properties of amorphous metal foils. In order to estimate the usage of amorphous metals foils as structural members, the tensile shear strength and the fracture features were investigated. Although the crystalline zone on the surface was formed, it was not the direct cause of the fracture of the weld. The fracture of the weld resulted from the geometry discontinuity between the workpiece and the protrusion zone, which was formed during the weld process. The vein pattern - the typical feature of the fracture of the amorphous metal - was formed on the fracture surface. The tensile shear stress was reached to 1200 N/㎟ (2-foils overlap welding) and 900 N/㎟ (10-foils overlap welding), whereas the tensile strength of the workpiece was 1500-2000 N/㎟.

  • PDF

A study on the Interfacial Properties of Electrodeposited Single Carbon Fiber/Epoxy Composites Using Tensile and Compressive Fragmentation Tests

  • Park, Joung-Man;Kim, Jin-Won
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests. A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber appeared under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces.

Effect of pMDI or HDI Content in UMF Resin on Bonding High Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.414-420
    • /
    • 2010
  • The effect of polymeric diphenyl methane-4,4-diisocyanate (pMDI) or 1,6-hexamethylene diisocyanate (HDI) in the UMF resin was discussed for improvement of the dry and wet shear strengths of plywood manufactured from high moisture content veneers. The curing behavior of UMF resin by pMDI or HDI content was examined by DSC and TGA, and its adhesion performance was evaluated by dry and wet shear strength tests of plywood. With the increase of pMDI content in the UMF resin, the curing temperature, reaction enthalpy (${\Delta}H$), and thermal stability consistently increased. With the increase of HDI content in the UMF resin, however, the curing temperature and reaction enthalpy (${\Delta}H$) decreased consistently and the thermal stability slightly increased in the range of 200 to $400^{\circ}C$ but decreased beyond $400^{\circ}C$. Also, the dry tensile shear strength increased up to the pMDI content of 5% and then decreased with its further addition but the wet tensile shear strength showed slight tendency to increase with the increase of pMDI content in the UMF resin. As the HDI content increased, however, the dry and wet tensile shear strengths of plywood consistently increased.