• Title/Summary/Keyword: Tensile test specimen

Search Result 687, Processing Time 0.028 seconds

Experimental Study of Extradosed Bridge Anchor System (엑스트라도조교 사재 정착구 시스템에 대한 실험적 연구)

  • Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.146-154
    • /
    • 2010
  • In this study the experimental results of fatigue specimen for the Strand Stay Cable Assembly of Extadosed bridges is investigated. The fatigue test and tensile experiment is conducted to 6 kinds of specimens. Test specimen OVM250-31 Strand Cable System manufactured by china OVM B-Machinery Co., Ltd, and OVM250-42 Parallel Strand Stay Cable Assembly manufactured by china OVM B-Machinery Co., Ltd, are passed for fatigue test and rupture tensile test. But Test specimen OVM250-42 Parallel Strand Stay Cable Assembly manufactured by korean A-Machinery Co., Ltd, is not passed for fatigue test conducted according to the "Recommendation for Stay Cable Design. The test result are compared to the fatigue criteria of PHI 2001 for cyclic load, and it is concluded that the current korean design code will be needed for representing the fatigue load in Hot Dip Galvanized Strand Stay Cable. It is verified that the new korean specification and quality criteria of Strand Stay Cable and exact experimental applied process will be needed.

Design of High Speed Tensile Test Machine for Flow Stress under Intermediate Strain Rate Condition (중변형률 속도 유동응력 확보를 위한 고속 인장 실험기 설계)

  • Choung, Joonmo;Yoon, Sung-Won;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.34-44
    • /
    • 2015
  • A hydraulic tensile test machine (HSTM) is one of the devices used to obtain the flow stress of a material during high-speed elongation. This paper first describes some features of a newly built HSTM. The improvement histories of the upper and lower jigs, which are the most vital parts of the HSTM, are also presented. We have frequently witnessed test failures with 1st generation jigs and specimens due to slip between the jig and specimen. 2nd generation jigs provide more stable test results, but the use of a longer upper jig induces excessive vibration and consequently makes it difficult to attach an environment chamber. 3rd generation jigs have some advances in terms of the symmetric fastening between the upper jig and specimen, as well as an exemption from direct contact between the lower jig and specimen. The performance of an environment chamber is verified by high and low temperature tests. A high-speed displacement measurement system is introduced based on a high-speed camera and motion-tracking software with aid of a surface grid device for the specimen.

The Biaxial Flexure Test(BFT) method and its finite element analysis (이방향 휨인장 시험(Biaxial Flexure Test; BFT) 및 삼차원 유한요소 해석)

  • Kim, Ji-Hwan;Zi, Goang-Seup;Kang, Jin-Gu;Oh, Hong-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.693-696
    • /
    • 2008
  • The biaxial tensile strength of concretes was measured by the Biaxial Flexure Test(BFT) which was recently developed to measure the biaxial tensile strength of concretes. From the test result, The circular specimen is generally fractured after 1${\sim}$3 of the initial crack were formed on the top of specimen. The direction and number of the initial crack was completely arbitrary. As the specimen was larger, the number of the crack increased. And, the strengths of the different radii and thickness of specimens were calculated by the commercial finite element program to study the size effect of the biaxial tensile strength like the uniaxial tensile strength. The parameters such as radii to the support and to the load point, were studied using the program. The results of the FE analysis were entirely consistent with the predictive solution, when b/a>0.4, and the thickness of the specimens were increased. On the other hands, those with lesser free length showed good results.

  • PDF

A Study on Tensile Strength According to Various Output Conditions of PLA+ Materials Using 3D Printing (3D 프린팅을 이용한 PLA+ 소재의 다양한 출력 조건에 따른 인장강도에 대한 연구)

  • Na, D.H.;Kim, S.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • 3D printing products manufactured by material extrusion are used in many industrial fields recently. However, these products are difficult to use in the field due to their low tensile strengths. In order to solve this problem, research on improving the tensile strength of the output using a 3D printer has been continuously conducted. In this study, we performed a tensile test using Universal Testing Machine according to infill pattern, nozzle temperature, bed temperature, and printing speed conditions. Results revealed that tensile specimen of concentric shape had the highest tensile strength in infill pattern condition and that the tensile strength increased linearly with increasing nozzle and bed temperatures. However, the tensile strength decreased with increasing printing speed. Consequently, we confirmed that tensile strength could be increased and decreased depending on output conditions of 3D printing.

A Study on Effects of Welding Clearance on Spot Weldability (점용접 간극이 용접성에 미치는 영향에 관한 연구)

  • 임재규;양승현;국중하
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 2002
  • The automobile is made up of about twenty thousand parts. Some parts are formed by pressing and combined by spot welding. Among them, steel palate of fuel tank is formed in the metal mold and bending parts are jointed by spot and seam welding. To find weldability conditions of spot welding, clearance between two welding steel plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a mild steel of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two steel plates was changed 0mm, 3mm and 5mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear.

Strength Change in Ultra Low Carbon Steel due to Carburizing Heat Treatment for Hot Press Forming (HPF 적용을 위한 극저탄소강의 강도에 미치는 침탄 열처리의 영향)

  • Kang, Soo Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.433-438
    • /
    • 2012
  • Strength change in ultra low carbon steel carburized at $880^{\circ}C$ and $930^{\circ}C$ for 10, 30, 60 and 120 minutes was investigated. The results were analyzed by a tensile test, chemical composition analysis, optical microscopy and scanning electron microscopy. Stress in the 0.5% strain specimen in the tensile test increased as the time treated at $880^{\circ}C$ and $930^{\circ}C$ increased, because the carbon diffusion layer and the martensite of the specimen increased with increasing treatment time. Martensite was found in the ferrite region in the specimen treated at $880^{\circ}C$, which is attributed to grain boundary diffusion.

Hybrid infrared-visible multiview correlation to study damage in a woven composite complex-shaped specimen

  • Andrija Zaplatic;Zvonimir Tomicevic;Xuyang Chang;Ivica Skozrit;Stephane Roux;Francois Hild
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.445-459
    • /
    • 2023
  • In this study, a cyclic tensile test on a notched butterfly specimen made of woven glass fiber composite was performed on a modified Arcan fixture. During the mechanical test, the sample was monitored with a hybrid stereoscopic system comprised of two visible lights and one infrared camera. The visible light cameras were employed for kinematic measurements using a finite-element-based multiview correlation technique. A semi-hybrid correlation approach was followed, providing Lagrangian temperature fields of the Region of Interest. Due to the complex composite architecture and specimen shape, localized shearing was observed during the tensile loading. Furthermore, asymmetrical damage developed around the notches as revealed by localized strains and thermal hot spots.

Calculation of Design parameter of Si3N4 for Engineering part through the Measurement of Tensile strength (인장강도 시험을 통한 질화규소 소재의 설계계수 계산)

  • Choi, Young-Min;Lee, Jae-Do;Ko, Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.709-717
    • /
    • 1996
  • Design parameter of Si3N4 for engineering part could be calculated through the measurement of tensile strength with cylindrical specimen($\Phi$=7.15, ι=110mm) Relative densities of Si3N4 test specimen prepared by pressure-less sintering (PLS) and sinter/HIP were 98.5 and 99.2% respectively. Tensile strength of Si3N4 was 378 MPa for PLS and 509 MPa for sinter/HIP. By the Weibull statistic Design parameter such as Weibull modulus m=8-12 could be calcuated. Fracture strength of Si3N4 related to volume could be effectively pridicted by using Weibull theory.

  • PDF

A STUDY ON THE EFFECT OF THERMOCYCLING TO THE PHYSICAL PROPERTIES OF DENTURE LINERS (열 순환에 따른 의치이장채의 물리적 성질의 변화에 관한 연구)

  • Lee Dong-Su;Lim Heon-Song;Lim Ju-Hwan;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.556-575
    • /
    • 2001
  • For the improvement of denture fitness of changed residual ridge, denture liner can be used. Denture liner should be very stable physically in various environments of the mouth as well as be bonded strongly with denture resin. In this study. the specimens bonded with four kinds of soft denture liner and three kinds of hard denture liner were used to test the physical properties of the liners. All experimental groups were stored in $37{\pm}1^{\circ}C$ distilled water for 24hours, followed by thermocycling between $15^{\circ}C$ and $45^{\circ}C$ with 15 second dwell time. 1000, 2000, 3000 cycles of thermocycling were excuted and physical properties were measured by Instron Universal Testing Machine. The obtained results were as follows : 1. In tensile bond test of sea liners, it was shown that both of $Molloplast-B^{(R)}$ specimens before and after thermocycling had the highest tensile strength, and in case of hard liners, Dura-Liner $II^{(R)}$ specimen had the highest tensile strength before and after thermocycling. Depending on thermocycling, $Soft-Relining^{(R)}$, $Denture-Relining^{(R)}$, $Molloplast-B^{(R)}$, $Coe-Soft^{(R)}$ and $Kooliner^{(R)}$ specimen showed significant difference(p<0.05). 2. In strain test of soft liners, it was shown that $Molloplast-B^{(R)}$ specimen before thermocycling and the $Coe-Soft^{(R)}$ after thermocycling showed highest results, and in case of hard liners, the Dura-Liner $II^{(R)}$ specimen before and after thermocycling had the highest result. Depending on thormocycling, $Denture-Relining^{(R)}$, $Molloplast-B^{(R)}$ and Dura-Liner $II^{(R)}$ specimen showed significant difference(p<0.05). 3. In maximum distance test of soft liners. the $Molloplast-B^{(R)}$ specimen before thermocycling and the $Coe-Soft^{(R)}$ after thermocycling showed highest results. and in case of hard liners, the Dura-Liner $II^{(R)}$ specimen before and after thermocycling showed highest result. Depending on thermocycling, $Denture-Relining^{(R)}$, $Molloplast-B^{(R)}$ specimens showed significant difference(p<0.05). 4. In elasticity test of soft liners, the $Molloplast-B^{(R)}$ specimen before and after thermocycling showed highest result. and in case of hard liners, the Dura-Liner $II^{(R)}$ specimen before thermocycling and the $Tokuso-Rebase^{(R)}$ after thermocycling showed highest results. Depending on thermocycling, $Soft-Relining^{(R)}$ $Molloplast-B^{(R)}$ specimens showed significant difference (p<0.05).

  • PDF

Tensile strength of unidirectional CFRP laminate under high strain rate

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.167-180
    • /
    • 2007
  • The tensile strength of unidirectional carbon fiber reinforced plastics under a high strain rate was experimentally investigated. A high-strain-rate test was performed using the tension-type split Hopkinson bar technique. In order to obtain the tensile stress-strain relations, a special fixture was used for the impact tensile specimen. The experimental results demonstrated that the tensile modulus and strength in the longitudinal direction are independent of the strain rate. In contrast, the tensile properties in the transverse direction and the shear properties increase with the strain rate. Moreover, it was observed that the strain-rate dependence of the shear strength is much stronger than that of the transverse strength. The tensile strength of off-axis specimens was measured using an oblique tab, and the experimental results were compared with the tensile strength predicted based on the Tsai-Hill failure criterion. It was concluded that the tensile strength can be characterized quite well using the above failure criterion under dynamic loading conditions.