• Title/Summary/Keyword: Tensile test

Search Result 4,149, Processing Time 0.037 seconds

Development of a Lower Limb Magnet System Capable of Polarity Conversion (극성변환이 가능한 하지의지 자석락 시스템 개발)

  • Beom-ki Hong;Seung-Gi Kim;Se-Hoon Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.77-85
    • /
    • 2024
  • The suspension device that connects the prosthetic leg and the residual limb allows lower limb amputees to wear prosthetic limbs, and is the most sensitive part when using prosthetic limbs as it is always in contact with the residual limb not only while walking but also in everyday life. In this paper, using the principles of attraction and repulsion of permanent magnets, we developed a magnetic lock suspension device that can fix the amputees and prosthetic legs of lower limb amputees by changing the polarity of the magnet. The operation method of the magnetic lock is that when neodymium magnets are placed on the left and right as NNSS based on a non-magnetic brass core, the magnetic force flows outward beyond the brass core using the adsorption member as a medium to generate bonding force. When rotated 90 degrees, the magnet moves to NSNS. The principle is that as the position moves, the magnetic force flows inward and cancels out.Based on this, we conducted a bonding test using tensile strength and a short-term comparative evaluation of the prosthesis with the shuttle lock suspension system, which was a comparison group, to verify reliability and evaluate satisfaction with the prototype. As a result, the tensile strength exceeding the appropriate bonding strength was confirmed, and the magnetic lock showed higher satisfaction than the shuttle lock. In the future, we plan to conduct long-term ADL clinical trials for commercialization and develop a product that can be distributed to actual amputees.

Structural Safety Test and Analysis of Type IP-2 Transport Packages with Bolted Lid Type and Thick Steel Plate for Radioactive Waste Drums in a NPP (원자력발전소의 방사성폐기물 드럼 운반을 위한 볼트체결방식의 두꺼운 철판을 이용한 IP-2형 운반용기의 구조 안전성 해석 및 시험)

  • Lee, Sang-Jin;Kim, Dong-hak;Lee, Kyung-Ho;Kim, Jeong-Mook;Seo, Ki-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.199-212
    • /
    • 2007
  • If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or dispersal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions. For the tests we examined the failure of bolts and the deformation of flange to evaluate a loss or dispersal of radioactive material and measured the shielding thickness using a ultrasonic thickness gauge to assess a loss of shielding integrity. The strains and accelerations acquired from tests were compared with those by analyses to verify the impact dynamic analysis. The analytic results were larger than the those of test so that the analysis showed the conservative results. Finally, we evaluated the safety of the type IP-2 transport package under the stacking test condition using a finite element analysis. Under the stacking test condition, the maximum Tresca stress of the shielding material was 1/3 of the yielding stress. Two kinds of a type IP-2 transport package were safe for the free drop test condition and the stacking test condition.

  • PDF

Evaluation of Dark Spots Formated on the High Temperature Metal Filter Elements (고온 금속필터 element 표면에 생성된 반점에 대한 평가)

  • Park, Seung-Chul;Hwang, Tae-Won;Moon, Chan-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Metal filter elements were newly introduced to the high temperature filter(HTF) system in the low- and intermediate-level radioactive waste vitrification plant. In order to evaluate the performance of various metal materials as filter media, elements made of AISI 316L, AISI 904L, and Inconel 600 were included to the test set of filter elements. At the visual inspection to the elements performed after completion of each test, a few dark spots were observed on the surface of some elements. Especially they were found much more at the AISI 316L elements than others. To check the dark spots are the corrosion phenomena or not, two kinds of analyses were performed to the tested filter elements. Firstly, the surfaces or the cross sections of filter specimens cut out from both normal area and dark spot area of elements were analyzed by SEM/EDS. The results showed that the dark spots were not evidences of corrosion but the deposition of sodium, sulfur and silica compounds volatilized from waste or molten glass. Secondly, the ring tensile strength were analyzed for the ring-shape filter specimens cut out from each kind of element. The result obtained from the strength tested showed no evidence of corrosion as well. Conclusionally, depending on the two kinds of analysis, no evidences of corrosion were found at the tested metal filter elements. But the dark spots formed on the surface could reduce the effective filtering area and increase the overall pressure drop of HTF system. Thus, continuous heating inside filter housing up to dew point will be required normally. And a few long-period test should be followed for the exact evaluation of corrosion of the metal filter elements.

  • PDF

Statistical Evaluation of Moisture Resistance by Mixing Method of Recycled Asphalt Mixtures (혼합방법에 따른 순환아스팔트 혼합물의 수분저항성 통계검정 평가)

  • Kim, Sungun;Kim, Yeongsam;Jo, Youngjin;Kim, Kwangwoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.167-176
    • /
    • 2021
  • When producing recycled asphalt mix, it is important that the old binder of reclaimed asphalt pavement(RAP) should be well melted during blending in the mixer. The recycled asphalt mix is produced by instant mixing(IM) of all materials(RAP, virgin asphalt and new aggregates) all together in the mixer. However, in the same recycled mix, the binder around RAP aggregate was found to show higher oxidation level than the binder coated around the virgin aggregate because the old binder of RAP was not rejuvenated properly while instant mixing. The partially-rejuvenated RAP binder is assumed to be a high stiffness point in IM recycled mix. In this study, the stage mixing(SM) method was introduced; blending RAP and virgin asphalt for the first stage, and then mixing all together with hot new aggregates for the second stage. To compare the effect of the two mixing methods on moisture resistance of recycled mixes, a statistical t-test was performed between SM and IM using indirect tensile strength(ITS) and tensile strength ratio(TSR). Three conditioning methods were used; a 16-h freezing and then 24-h submerging, 48-h submerging, and 72-h submerging in 60℃ water. It was found that the TSR(=ITSwet/ITSdry) values of the mixes prepared by SM was clearly higher than the IM mixes, and coefficients of variation of SM mixes were lower than the IM mixes. It was also observed that the ITSWET of SM was significantly different from the IM at α=0.05 level by statistical t-test. The ITSWET of SM mix was reduced less than the IM mix in severer conditioned mixes. Therefore, it was concluded that the stage mixing method was an important blending technique for producing better-quality of recycled asphalt mixes, which would show higher moisture resistance than the recycled mixes produced by conventional instant mixing.

An Experimental study on the behavior of gap N-joints in Cold-formed Square Hollow Sections with connection plate for a tension member (인장용 연결 플레이트를 갖는 각형강관 갭 N형 접합부의 거동에 관한 실험적 연구)

  • Park, Keum Sung;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.769-780
    • /
    • 2004
  • This paper's objective is to evaluate the experimental behavior of gap N-joints made of cold-formed, square, hollow steel sections, with a connection plate as a tension member. The principal parameters for testing included the ratio of chord width to thickness, the ratio of brace width to chord width, eccentric ratio, the shape of the compression member, the branch angle, and the stiffening plate of the chord flange. The strength and failure mode were examined through the test for the gap N-joint, consisting of several parameters. Based on the results of the test, the gap N-joints were determined according to the capacity preceding the displacement of the tension, regardless of the width ratio, and the split failure mode-connected surface for a chord in joints. The strength of the gap N-joints increased proportionally as the $2\gamma$(B/T) ratio decreased, and as the width ratio(${\beta}$) of branch to chord increased. Particularly, $2\gamma$(B/T) decreased as the capacity of gap N-joint increased. The results of the test were summarized for the capacity, initial stiffness, ductility, and change of the failure mode of each gap N-joint.

Development of Computational Evaluation Method for Fatigue Crack Growth Rate based on Viscoplastic-Damage Model (점소성-손상모델 기반 피로균열 진전속도 전산 평가법 개발)

  • Kim, Seul-Kee;Kim, Jeong-Hyeon;Lee, Chi-Seung;Kim, Myung-Hyun;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In this paper, computational evaluation method for fatigue crack growth rate(FCGR) based on material viscoplastic-damage model is proposed. Viscoplastic-damage model expressing material constitutive behavior of 7% nickel steel is introduced and is implemented into commercial finite element analysis(FEA) code, ABAQUS, as a user defined material subroutine(UMAT) for application in the FEA environments. Verification of developed UMAT and material parameters of material model are carried out by uniaxial tensile test simulations of 7% nickel steel. Moreover, jump-in-cycles procedure and rearrangement of critical damage are employed and also implemented to the ABAQUS UMAT for fatigue damage analysis. Typical FCGR test results such as relationship between crack length and number of cycles and relationship between da/dN and ${\Delta}K$ could be obtained from FCGR test simulation using developed UMAT and these results are compared with experimental results in order to verify of proposed computational method.

Evaluation of Mechanical and Interfacial Properties between Glass Fiber and Epoxy Resin after NaCl Solution and Aging Treatments (염수 노화처리 일수에 따른 유리섬유 에폭시간의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Although it is important to have high strength of each of fiber and matrix, interface between fiber and matrix is most important. If NaCl water penetrates the interface, that area will be weak. So experiment about increasing interfacial strength is in process. In this study, the change of properties by mechanical, interfacial and micromechanical tests was observed after NaCl and aging treatment. The changes in mechanical properties of glass fiber were investigated using single-fiber tensile test. Interfacial properties between glass fiber and epoxy resin were evaluated using nondestructive acoustic emission (AE) and micromechanical test applied to fatigue test. Through change of fatigue properties, relative interfacial properties were evaluate. In conclusion, glass fiber diameter decreased and the reduction of mechanical and interfacial was observed with NaCl solution and aging treatment.

Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete (초고성능 콘크리트의 수화발열 및 역학적 특성 모델)

  • Cha, Soo-Won;Kim, Ki-Hyun;Kim, Sung-Wook;Park, Jung-Jun;Bae, Sung-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Concrete has excellent mechanical properties, high durability, and economical advantages over other construction materials. Nevertheless, it is not an easy task to apply concrete to long span bridges. That's because concrete has a low strength to weight ratio. Ultra high performance concrete (UHPC) has a very high strength and hence it allows use of relatively small section for the same design load. Thus UHPC is a promising material to be utilized in the construction of long span bridges. However, there is a possibility of crack generation during the curing process due to the high binder ratio of UHPC and a consequent large amount of hydration heat. In this study, adiabatic temperature rise and mechanical properties were modeled for the stress analysis due to hydration heat. Adiabatic temperature rise curve of UHPC was modeled superposing 2-parameter model and S-shaped function, and the Arrhenius constant was determined using the concept of equivalent time. The results are verified by the mock-up test measuring the temperature development due to the hydration of UHPC. In addition, models for mechanical properties such as elastic modulus, tensile strength and compressive strength were developed based on the test results from conventional load test and ultrasonic pulse velocity measurement.

Reinforcement Effectiveness and Arching Effect of Geogrid-Reinforced and Pile-Supported Roadway Embankment (지오그리드로 보강된 성토지지말뚝의 보강 및 아칭효과분석)

  • Shin, Eun Chul;Oh, Young In;Lee, Dong Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.11-18
    • /
    • 2005
  • A pilot scale filed model test and 2-D numerical analysis was conducted to evaluate the effectiveness of constructing a geogrid-reinforced and pile-supported embankment system over soft ground to reduce differential settlement, and the results are presented hearin. Three-by-three pile groups with varying the space between pile were driven into a layer of soft marine clay and a layer of geogrid was used as reinforcement over each pile group. 2-D numerical analysis has been conducted by using the FLAC-2D(Fast Lagrangian Analysis of Continua) program for same condition of field model test. The settlement, vertical stress, and strain of geogrid due to the construction of embankment were measured at various locations. Based on the field model test and numerical analysis results, pile reinforcement generated the soil arching at the midspan of pile cap and the geogrid reinforcement helps reduce the differential settlement of the soft ground by tensile strength of geogrid. Also for $D/b{\geq}6.0$, the effectiveness of geogrid reinforcement in reducing settlement is negligible.

  • PDF

Modeling of Friction Characteristic Between Concrete Pavement Slab and Subbase (콘크리트 포장 슬래브와 보조기층 간 마찰특성 모형화)

  • Lim, Jin-Sun;Son, Suk-Chul;Liu, Ju-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.211-218
    • /
    • 2010
  • Volume of concrete slab changes by temperature and moisture effects. At that time, tensile stress develops because the slab volume change is restrained by friction resistance between the slab and subbase, and then crack occurs occasionally. Accordingly, researchers have made efforts to figure out the friction characteristics between the slab and subbase by performing push-off tests. Lately, researches to analyze concrete pavement behavior by the friction characteristics have been performed by finite element method. In this study, The friction characteristics between the slab and subbase were investigated based on the friction test results for lean concrete, aggregate, and asphalt subase widely used in Korean concrete pavements. The energy method bilinearizing relation between nonlinear friction resistance and displacement were suggested. The friction test was modeled by 3-D finite element program, ABAQUS, and the model was verified by comparing the analyzed results to the test results. The bilinear model developed by the energy method was validated by comparing analysis results obtained by using the nonlinear and bilinear friction resistance displacement relation as input data. A typical Korean concrete pavement was modeled by ABAQUS and EverFE and analyzed results were compared to evaluate applicability of the bilinear model.