• Title/Summary/Keyword: Tensile test

Search Result 4,149, Processing Time 0.033 seconds

Development of Connection Details of RC Wale-Steel Beam Joint Subjected to Axile and Shear Load (축력 및 전단력을 받는 RC 띠장-철골 보 접합부의 접합연결재 개발)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • The RC wale-steel beam stud connection may have smaller moment and shear resistance because the tensile and shear capacity of the studs are limited by the depth of RC beam. Especially, they are subjected to compressive axial load. This paper describes the experimental works to develop the connection details of RC wale-steel beam joints subjected to shear and axial loads. Shear connectors developed in this study are closed C type deformed bar, opened C type deformed bar, and U type deformed bar. From shear test, the shear performance of RC wale-steel beam joint with the developed connectors are compared with the stud connection. Test results indicated that the developed connectors were very effiecive to increase the shear strength.

Effects of Cr, Mo an B additions on the microstructure and mechanical properties of Fe-28at.%Al alloys (Fe-28at.%Al 합금의 미세조직과 기계적 성질에 미치는 Cr, Mo 및 B의 영향)

  • Choi, Dap-Chun;Lee, Yeon-O;Kim, Kwan-Hyu;Park, Eun-Sik;Lee, Ho-Jong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.469-476
    • /
    • 1995
  • The effects of Cr, Mo or B additions were investigated on $B2{\leftrightarrow}DO_3$ structural transition temperature $(T_C)$ and mechanical properties of Fe-28at.%Al. The raw materials were arc-melted in vacuum and then subjected to the following heat-treatments to maximize the $DO_3$ ordered structure : $1000^{\circ}C/7days$, slowly cooled to $500^{\circ}C$ and then held for 5 days. In the effect on the grain refinment, the addition of alloying element B was the most effective. The addition of Cr or Mo had little effect. When 1at.%Mo was added, $T_c$ increase about $30^{\circ}C$, but Cr had a very little effect on $T_c$. On the contrary, when B was added, $T_c$ was apt to come down minutely. In the additional effect of alloying element on the mechanical properties, Cr was apt to decrease the microvickers hardness and yield strength, Mo and B didn't have much effect. In the case of compressure strength test, the effect of the environment on the yield strength was contrary to the result of the tensile strength test.

  • PDF

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

A Study on Shear Strength Test for FRP Girder of Filled Concrete (콘크리트 충진 FRP 거더의 전단재하 실험에 관한 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-Ok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2008
  • Fiber Reinforced Polymer, FRP has a light weight, a high tensile strength based on design, non-electronic, non-magnetic, and rust-resistant feature, etc and many researches are being conducted recently on FRP in the construction area. Among them, GFRP (Glass Fiber Reinforced Polymer) is excellent in price competitiveness and is widely being used. However, since GFRP has a relative low modulus of elasticity and causes excessive deflection, the section must be large to be used as a structural component and an investigative review must be carried out in design to set the limit for deflection by the use load. Therefore, in order to solve the mentioned technical problems, this study suggested a section of a module form such that application of a large-scale section is possible. Also, to secure the low rigidity of FRP, this study developed a new FRP+ concrete composite girder form that confined the concrete. To identify the structural movement of the developed FRP+ concrete composite girder, shear strength test was carried out.

Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum (구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo)

  • Bang, Woong-Ho;Kang, Choon-Sik;Park, Jae-Hyun;Kweon, Young-Gak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF

A Study of Characteristics on the Dissimilar Metals (Alloy steel : A387 Gr. 91 - Carbon Steel : A516 Gr. 70) Welds Made with FCA Multiple Layer Welding: Part 2 (합금강(ASTM A387 Gr. 91) - 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성 평가 : Part. 2)

  • Shin, Tae Woo;Hyun, Jun Hyeok;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.68-74
    • /
    • 2017
  • Characteristics of dissimilar metal welds between alloy steel ASTM A387 Gr. 91 and carbon steel ASTM A516 Gr.70 made with Flux cored arc welding(FCAW) have been evaluated in terms of microstructure, mechanical strength, chemical analysis by EDS as well as corrosion test. Three heat inputs of 15.0, 22.5, 30.0kJ/cm were employed to make joints of dissimilar metals with E71T-1C wire. Post-weld heat treatment was carried out at $750^{\circ}C$ for 2.5 h. Based on microstructural examination, Intragranular polygonal ferrite and grainboundary ferrite were formed only in first layer of weld metal. Another layers consisted of acicular ferrite and $Widmannst{\ddot{a}}tten$ ferrite. The amount of acicular ferrite was increased with decreasing heat input and layer. Heat affected zone of alloy steel showed the highest hardness due to the formation of tempered martensite and lower bainite. Lower and upper bainite were formed in heat affected zone of carbon steel. Tensile strengths of dissimilar metal welds decreased with increasing heat inputs. Dissimilar metal welds showed a good hot cracking resistance due to the low HCS index below 4. The salt spray test of dissimilar metals welds showed that the weight loss rate by corrosion below 170 hours was decreased with increasing heat inputs due to the increase of the amount of acicular ferrite.

Plasma Treatment of Carbon Nanotubes and Interfacial Evaluation of CNT-Phenolic Composites by Acoustic Emission and Dual Matrix Techniques (음향 방출과 이중 기지 기술을 이용한 탄소나노튜브의 플라즈마 처리 효과에 따른 탄소나노튜브-페놀 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Lee, Woo-Il;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.76-81
    • /
    • 2012
  • Atmospheric pressure plasma treatment on carbon nanotube (CNT) surfaces was performed to modify reinforcement effect and interfacial adhesion of carbon fiber reinforced CNT-phenolic composites. The surface changes occurring on CNT treated with plasma were analyzed by using Fourier transform infrared spectroscope (FT-IR). The significant improvement of wettability on CNT was confirmed by static contact angle test after plasma treatment. Such plasma treatment resulted in a decrease in the advancing contact angle from $118^{\circ}$ to $60^{\circ}$. The interfacial adhesion between carbon fiber and CNT-phenolic composites increased by plasma treatment based on apparent modulus test results during quasi-static tensile strength. Furthermore, the proposed database offers valuable knowledge for evaluating interfacial shear strength (IFSS).

Bond Strength of Carbon Fiber Sheet on Concrete Substrate Processed by Vacuum Assisted Resin Transfer Molding

  • Uddin, N.;Shohel, M.;Vaidya, U.K.;Serrano-Perez, J.C.
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.277-299
    • /
    • 2008
  • High quality and expedient processing repair methods are necessary to enhance the service life of bridge structures. Deterioration of concrete can occur as a result of structural cracks, corrosion of reinforcement, and freeze.thaw cycles. Cost effective methods with potential for field implementation are necessary to address the issue of the vulnerability of bridge structures and how to repair them. Most infrastructure related applications of fiber-reinforced plastics (FRPs) use traditional hand lay-up technology. The hand lay-up is tedious, labor-intensive and relies upon personnel skill level. An alternative to traditional hand lay-up of FRP for infrastructure applications is Vacuum Assisted Resin Transfer Molding (VARTM). VARTM uses single sided molding technology to infuse resin over fabrics wrapping large structures, such as bridge girders and columns. There is no work currently available in understanding the interface developed, when VARTM processing is adopted to wrap fibers such as carbon and/or glass over concrete structures. This paper investigates the interface formed by carbon fiber processed on to a concrete surface using the VARTM technique. Various surface treatments, including sandblasting, were performed to study the pull-off tensile test to find a potential prepared surface. A single-lap shear test was used to study the bond strength of CFRP fabric/epoxy composite adhered to concrete. Carbon fiber wraps incorporating Sikadur HEX 103C and low viscosity epoxy resin Sikadur 300 were considered in VARTM processing of concrete specimens.

Experimental Testing of Curved Aluminum Honeycomb/CFRP Sandwich Panels (곡면형상의 알루미늄 하니콤/CFRP 샌드위치 패널에 관한 실험적 연구)

  • Roy, Rene;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents the fabrication and 3-point flexion testing of carbon fiber reinforced polymer (CFRP) composite face/aluminum honeycomb core sandwich panels. Specimen sandwich panels were fabricated with three honeycomb types (3.18 mm, 4.76 mm, and 6.35 mm cell size) and three panel radii (flat, r = 1.6 m, r = 1.3 m). The curved sandwiches were fabricated normally with the core in the W-direction. The tensile mechanical properties of the CFRP $2{\times}2$ twill fabric face laminate were evaluated (modulus, strength, Poisson's ratio). The measured values are comparable to other CFRP fabric laminates. The flat sandwich 3-point flexion test core shear strength results were 11-30% lower than the manufacturer published data; the test set-up used may be the cause. With a limited sample size, the 1.3 meter panel curvature appeared to cause a 0.8-3.8% reduction in ultimate core shear strength compared to a flat panel.

Mechanical Properties of Fiber Reinforced Concrete According to Steel Fiber Dispersion (강섬유의 분포 특성에 따른 섬유보강 콘크리트의 역학적 특성)

  • Lee, Bang-Yeon;Kang, Soo-Tae;Kim, Yun-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.921-924
    • /
    • 2008
  • Several techniques, including transmission X-ray photography and AC-impedance spectroscopy, are available for evaluating the fiber dispersion in a fiber reinforced concrete Evaluating the fiber dispersion in fiber reinfored concrete needs since the fibers bridge crackseffectively. However, these equipment is very expensive. Therefore this paper presents the quantitative evaluation method based on the image analysis of sectional image taken using an ordinary digital camera. After detecting the fiber accurately, the fiber dispersion characteristics are represented by the coefficient such as the fiber dispersion coefficient, the number of fibers in unit area, and the distribution of the fiber orientation. Test were performed to evaluate the effectiveness of proposed method and the dispersion characteristics of fibers according placing method and flow direction. Additionally, the effect of fiber dispersion characteristics on mechanical properties was investigated. Test results shows that fiber aligned along the flow direction and more fibers placed and dispersion was better on the section parallel to the flow direction. And about 50% difference in the flexural tensile strength according to the placing method occured.

  • PDF