• Title/Summary/Keyword: Tensile test

Search Result 4,151, Processing Time 0.03 seconds

Accelerated Life Prediction of the Rubber for Combat Boots (전투화용 고무의 가속수명예측)

  • Yu, Gun-Sung;Lee, Nam-Rye;Yeo, Yong-Heon;Lee, Beom-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8637-8642
    • /
    • 2015
  • Typical aging for the rubber using the current military adhesive combat boots was spread with a regular aging caused by heat stress. In this study, the aging test of the rubber for combat boots was carried out and the reaction rate constant, k was calculated at aging temperature $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, using the Arrhenius equation. The lifetime limit was assumed that the tensile strength of the product is reduced to 30%, the elongation is reduced to 50% and abrasion resistance ratio is 380%. ln($P/P_0$) and the lifetime was predicted with the consideration of the activation energy constant. According to the above, the lifetime of the rubber for combat boots with influenced by aging temperature was predicted. As the result, the estimate lifetime at $20^{\circ}C$ was confirmed more than 10 years.

Material and Structural Characteristics of High Performance Permanent Form Using Stainless Steel Fiber (스테인레스 강섬유를 이용한 고성능 영구거푸집의 재료 및 구조적 거동특성에 관한 연구)

  • Sim, Jong-Sung;Oh, Hong-Seob;Ju, Min-Kwan;Kim, Kil-Jung;Shin, Hyun-Yang
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.73-82
    • /
    • 2006
  • Nowadays, the general stripping work of form has brought some problems; increase of total constructing cost resulted from the man-dependent form work procedure and environmental issues by wasting the debonded form. In this study, to effectively reduce unnecessary cost and resolve the environmental problems caused by these kinds of reason, a permanent form method using stainless steel fiber was introduced then its material and structural characteristics were evaluated. In the case of material characteristic, the permanent form had a good ductile behavior in the result of flexural test of the permanent form panel and pull-out test of insert bolt which is installed in the permanent form and perfect bonding capacity with a field concrete. In the case of structural characteristic, compressive and tensile behavior of the permanent form was evaluated. It also showed a good structural behavior in the view of load-deflection relationship, crack patterns and additional strengthening effect.

STRAIN ON THE LABIAL PLATES AROUND ABUTMENTS SUPPORTING REMOVABLE PARTIAL DENTURES WITH VARIOUS PROSTHETIC DESIGNS: AN IN VITRO STUDY

  • Kim, Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.322-330
    • /
    • 2005
  • Statement of problem. In distal extension removable partial denture, the preservation of health of abutment teeth is very important, but abutment teeth are subjected to unfavorable stress. Purpose. The purpose of this study was to investigate the biomechanical effects of mandibular removable partial dentures with various prosthetic designs using strain gauge analysis. Material and methods. Artificial teeth of both canines were anchored bilaterally in a mandibular edentulous model made of resin. Bilateral distal extension removable partial dentures with splinted and unsplinted abutments were fabricated. Group 1 : Clasp-retained mandibular removable partial denture with unsplinted abuhnents Group 2 : Clasp-retained mandibular removable partial denture with splinted abutments by 6-unit bridge Group 3 : Bar-retained mandibular removable partial denture Strain gauges were bonded on the labial plate of the mandibular resin model, approximately 2 mm close to the abutments. Two vertical experimental loadings (100N and 200N) were applied subsequently via two miniature load cells that were placed at mandibular first molar regions. Strain measurements were performed and simultaneously monitored from a computer connected to data acquisition system. For within-group evaluations, t-test was used to compare the strain values and for between-group comparisons, a one-way analysis of variance (ANOVA) was used and Duncan test was used as post hoc comparisons. Results. Strain values increased as the applied load increased from 100N to 200N for all groups (p<.05). The strain values of group 1 and 2 were tensile under loadings. In contrast, strain values of group 3 were compressive in nature. Under 100N loading, group 1 showed higher strain values than group 3 in absolute quantity (p<.05). Under 200N loading, group 3 showed higher strain values than group 1 and 2 in absolute quantity (p<.05). Group 1 showed higher strain values than group 2 (p<.05). Conclusion. Splinting of two isolated abutments by bridge reduced the peri-abutment strain in comparison with unsplinted abutments. Strain of bar-retained removable partial denture increased much more as applied load increased, but was compressive in nature.

Experimental Study on the Mechanical Properties of Glass Concrete with Powdered Waste Glasses (폐유리 분말을 혼입한 유리 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 배수호;정영수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • As a part of the movement of natural resources conservation, there have been doing many recycling research works for obsolete aged tire, wasted plastic materials, etc. The purpose of this experimental study is to develop glass concrete by recycling wasted glasses as a cementitious constituent in concrete. First of all, the optimum replacement ratio of powdered waste glasses(PWG) can be determined through pilot compressive strength test on normal and high strength concrete cylinders, which have been made in various mix proportions by changing the replacement ratio of PWG. Then, further tests have been done to figure out mechanical properties of most desirable glass concrete with optimum replacement ratio of PWG, such as static modulus of elasticity, compressive and tensile strengths, flexural strength. On the other hand, the alkali-silica reactions by the mortar-bar method(KS F 2546) have been experimentally doing in various grain sizes of PWG, since the alkali in the cement has a tendency to react with the silica in the PWG. In can be confirmed from the test that glass concrete can have better workability than concrete with silica fume, and they are alike in compressive strength. It is concluded that wasted glasses can be used as pratical additives for economic and environmentally friendly concrete.

Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement (전단 보강 슬래브-기둥 내부 접합부 및 기초판에 대한 뚫림 전단강도 모델)

  • Choi, Kyoung-Kyu;Kim, Sug-Hwan;Kim, Dong-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2011
  • In the present study, an improved design method was developed for the punching shear strength of interior slabcolumn connections and column footings with and without shear reinforcement. In the evaluation of the punching shear strength, the possible failure mechanisms of the connections and column footings were considered. The considered failures modes were inclined tensile cracking of concrete, yielding of shear re-bars, and concrete crushing of compression zone/strut. The punching shear applied to the concrete critical section was assumed to be resisted mainly by the compression zone. The punching shear strength of the concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal stress and shear stress. For verification of the proposed design method, its prediction was compared with the existing test results. The result showed that the proposed method predicted the strengths of the test specimens better than the current design methods of the KCI code for both the shear reinforced and unreinforced cases.

Analysis on Behavior of Mechanical Bulb (GangWhaGu) Applied to Slope Reinforcement (비탈면 보강에 적용된 네일강화구 거동 분석)

  • Jung, Soonkook;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.55-62
    • /
    • 2016
  • The frequency slope over a year due to climate collapse is connected with huge casualties and property damage, but the situation rarely reduce the damage that gradually increases in size. In order to suppress this, engineers are improved better reinforcement and continued efforts to improve the shear force or withdrawal force. In this study, the GangWhaGu attached to the nail tip that improves the soil nail pullout resistance, and a method to increase the nail integral GangWhaGu maximize the contact area soil - by increasing the friction of the grout seems to increase the effect of slope stability. In order to validate the experiment to determine the effect of reinforcing the soil nail pullout tests of indoor and Behavior GangWhaGu nail and through field tests were conducted and applicability. Experimental results, the case of a pull-out test compared to the GangWhaGu nail through the tensile force of the nail were to increase by approximately 20%.

Comparative evaluation of effects of different surface treatment methods on bond strength between fiber post and composite core

  • Mosharraf, Ramin;Yazdi, Najmeh Baghaei
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • PURPOSE. Debonding of a composite resin core of the fiber post often occurs at the interface between these two materials. The aim of this study was to evaluate the effects of different surface treatment methods on bond strength between fiber posts and composite core. MATERIALS AND METHODS. Sixty-four fiber posts were picked in two groups (Hetco and Exacto). Each group was further divided into four subgroups using different surface treatments: 1) silanization; 2) sandblasting; 3) Treatment with 24% $H_2O_2$, and 4) no treatment (control group). A cylindrical plexiglass matrix was placed around the post and filled with the core resin composite. Specimens were stored in 5000 thermal cycles between $5^{\circ}C$ and $55^{\circ}C$. Tensile bond strength (TBS) test and evaluation using stereomicroscope were performed on the specimen and the data were analyzed using two-way ANOVA, Post Hoc Scheffe tests and Fisher's Exact Test (${\alpha}$=.05). RESULTS. There was a significant difference between the effect of different surface treatments on TBS ($P$ <.001) but different brands of post ($P$=.743) and interaction between the brand of post and surface treatment ($P$=.922) had no significant effect on TBS. Both silanization and sandblasting improved the bonding strength of fiber posts to composite resin core, but there were not any significant differences between these groups and control group. CONCLUSION. There was not any significant difference between two brands of fiber posts that had been used in this study. Although silanization and sandblasting can improve the TBS, there was not any significant differences between surface treatments used.

Fatigue Behavior of Concrete Beam Using CFRP Rebar (CFRP 보강근을 이용한 콘크리트 보의 피로거동)

  • Zhang, Pei-Yun;Kim, Okk-Yue;Cui, Xian
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.495-501
    • /
    • 2019
  • Recently, research has been carried out into the use of carbon fiber reinforced polymer (CFRP), which has good tensile strength and corrosion resistance, as an alternative to rebar. But as of yet, the research into fatigue failure of CFRP is insufficient. In this paper, an analysis was performed of the mechanical behavior and failure patterns of CFRP reinforced concrete beams according to static and cyclic loads, in order to evaluate the safety and validity of CFRP rebar as an alternative material for rebar. The cyclic load ranged from 10 % to 70% of the ultimate load, and was loaded at a speed of 3Hz using a sine wave in the form of a three-point loading method. Through the static load test, the maximum load or stiffness of the beam was found to increase remarkably with the increase of the reinforcement, but the fatigue test showed that the number of repetitions decreased and the amount of deflection increased with the increase of the reinforcement.

Investigation on optimum protection potential of high-strength Al alloy(5456-H116) for application in ships (선박용 고강도 Al합금(5456-H116)의 최적 방식 전위결정에 관한 연구)

  • Kim Sung-Jong;Ko Jae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.157-168
    • /
    • 2006
  • Recently, interest in using Al alloys in ship construction instead of fiber-reinforced plastic (FRP) has increased because of the advantages of A) alloy ships over FRP ships, including high speed, increased load capacity. and ease of recycling. This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. These results will provide reference data for ship design by determining the optimum protection potential regarding hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a Passive film. In a potentiostatic experiment. the current density after 1200 sec in the Potential range of $-0.68\~-1.5\;V$ was low. This low current density indicates the protection potential range. Elongation at an applied potential of 0 V was high in this SSRT. However, corrosion protection under these conditions is impossible because the mechanical properties are worse owing to decreased strength resulting from the active dissolution reaction in parallel parts of the specimen. A film composed of $CaCO_3\;and\;Mg(OH)_2$ confers corrosion resistance. However, at potentials below -1.6 V forms non-uniform electrodeposition coating, since there is too little time to form a coating. Therefore, we concluded that the mechanical properties are poor because the effect of hydrogen gas generation exceeds that of electrodeposition. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.45 to -0.9 V (SSCE).

Effect of Thermal Aging on Material Strength and Fracture Behavior in Mod.9Cr-1Mo Steel (열시효가 Mod.9Cr-1Mo강의 재료강도 및 파괴 거동에 미치는 영향)

  • Lee, Hyeong-Yeon;Kim, Woo-Gon;Son, Seok-Kwon;Hong, Suk Woo;Seok, Chang Sung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.101-109
    • /
    • 2016
  • The material properties of heat resistant materials at power plants are affected by thermal aging as operating time is accumulated. In this study, the influence of thermal aging on yield strength, tensile strength and fracture behavior for Mod.9Cr-1Mo (ASME Grade 91) steel which is a material widely adopted for Generation IV nuclear energy system has been investigated and analyzed. Service exposed Gr.91 steel materials sampled from a piping system of an ultra-supercritical (USC) plant in Korea with accumulated operation time of 73,716 hours were used for material testing. The test results of the service exposed material specimens were compared with those of the virgin Gr.91 steel specimens. Those test data were compared with the material properties of ASME code and RCC-MRx code. Conservatisms of the material properties in the design codes have been quantified based on the comparisons of those from virgin and service exposed material specimens.