• Title/Summary/Keyword: Tensile strain

Search Result 1,887, Processing Time 0.025 seconds

Seismic Performance of Circular RC Columns Retrofitted Using Ductile PET Fibers (고연성 PET 섬유로 보강된 철근콘크리트 원형 기둥의 내진성능)

  • Vachirapanyakun, Sorrasak;Lim, Myung-Kwan;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.289-298
    • /
    • 2016
  • An experimental research was performed using fibers for the purpose of retrofitting existing reinforced concrete circular columns. Glass fiber (GF) and polyethylene terephthalate (PET) were used as well as combined GF+PET (HF). PET has high tensile strength (over 600 MPa) and high ductility (about 15%), but has very low elastic modulus (about 1/6 of GF). A total of four columns was tested against laterally applied reverse cyclic load: control column, GF-, PET-, and HF-strengthened columns. All columns retrofitted using fibers demonstrated improved moment capacity and ductility. Moment capacity of GF-, PET-, and HF-strengthened columns was 120%, 107%, and 120% of the control column, respectively. Drift ratio of all retrofitted columns also increased by 63 ~ 83% over the control column. The final failure mode of the control column was main bar buckling. The final failure mode of the GF- and HF-strengthened columns was GF rupture while that of the PET-strengthened column was main bar rupture in tension. No damage was observed for PET at the ultimate stage due to excellent strain capacity intrinsic to PET. Current test results indicate that PET can be effectively used for seismic retrofit of RC columns. It is noted that the durability characteristics of PET needs to be investigated in the future.

Evaluation of Mazars damage model of KURT granite under simulated coupled environment of geological disposal (처분 복합환경을 고려한 KURT 화강암의 Mazars 손상모델 평가)

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.419-434
    • /
    • 2020
  • In this study, the damage parameters of Mazars model for KURT (KAERI Underground Research Tunnel) granite are measured form uniaxial compressive and Brazilian tests under the simulated coupled condition of a deep geological disposal. The tests are conducted in three different temperatures (15℃, 45℃, and 75℃) and dry/saturated conditions. Major model parameters such as maximum effective tensile strain (𝜖d0), At, Bt, Ac, and Bc differ from the typical reference values of concrete specimens. This is likely due to the difference in elastic modulus between rock and concrete. It is found that the saturation of specimens causes an increase in value of Bt and Bc while, the rise in temperature increases 𝜖d0 and Bt and decreases Bc. The damage model obtained from this study will be used as the primary input parameters in the development of coupled Thermo-Hydro-Mechanical Damage numerical model in KAERI.

Bending Effect of Laminated Plates with a Circular Hole Repaired by Single-Sided Patch Based on p-Convergent Full Layerwise Model (p-수렴 완전층별모델에 의한 일면패치로 보강된 원공 적층판의 휨효과)

  • Woo, Kwang-Sung;Yang, Seung-Ho;Ahn, Jae-Seok;Shin, Young-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.463-474
    • /
    • 2009
  • Double symmetric patch repair of existing structures always causes membrane action only, however, in many cases this technique is not practical. On the other hand, the bending stiffness of the patch and the skin increases as tensile loading is increased and affects the bending deformation significantly in the case of single-sided patch repair. In this study, the p-convergent full layerwise model has been proposed to determine the stress concentration factor in the vicinity of a circular hole as well as across the thickness of plates with single-sided patch repair. In assumed displacement field, the strain-displacement relations and 3-D constitutive equations of a layer are obtained by the combination of 2-D and 3-D hierarchical shape functions. The transfinite mapping technique has been used to represent a circular boundary and Gauss-Lobatto numerical integration is implemented in order to directly obtain stresses occurred at the nodal points of each layer without other extrapolation techniques. The accuracy and simplicity of the present model are verified with comparison of the previous results in literatures using experiment and conventional 3-D finite element. Also, the bending effect has been investigated with various patch types like square, circular and annular shape.

Laboratory Test and Evaluation to Characterize the Cracking Resistance of Asphalt Mixtures (아스팔트 혼합물의 균열 저항성 평가 연구)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.9-15
    • /
    • 2004
  • The cracking resistance of asphalt mixtures is generally evaluated by measuring a single parameter (i.e., Tensile strength, Stiffness). However, the use of a single parameter has been questioned in the evaluation of asphalt mixture cracking performance. The focus of this study was to clearly identify the key properties and characteristics associated with the cracking resistance of asphalt mixtures. Results of fracture, creep, and strength tests at multiple loading rates performed on the modified and unmodified mixtures showed that the mixture cracking resistance was primarily affected by the rate of micro-damage accumulation. This was reflected in the m-value, without affecting the fracture energy limit. It was also observed that the short loading time (elastic) stiffness alone could not differentiate the mixture cracking resistance of the mixtures. It was concluded that the key to characterize the cracking resistance of asphalt mixture is in the evaluation of the combined effects of creep and failure limits. It was also found that a residual dissipated energy parameter measured from Superpave IDT strength test gave the quick and useful way to distinguish the difference of cracking resistance of asphalt mixtures. Failure strain in the longer-term creep test appeared to be a useful parameter for evaluating the combined effects of creep and failure limits of asphalt mixtures.

  • PDF

Wettability Evaluation of Sn-0.3Ag-0.7Cu Solder Alloy with Different Flux Activity and Indium Addition (플럭스 활성도 및 In 첨가에 따른 Sn-0.3Ag-0.7Cu 솔더 조성의 젖음 특성 변화)

  • Yu, A-Mi;Kim, Jun-Ki;Kim, Mok-Soon;Hyun, Chang-Yong;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.51-57
    • /
    • 2008
  • In this paper, wetting and interfacial reaction properties for low Ag containing Sn-Ag-Cu Pb-free solder alloy, i.e., Sn-0.3Ag-0.7Cu were investigated and compared with those of Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu. Melting behavior and stress-strain curves of some Sn-xAg-xCu alloys were also measured using a differential scanning calorimeter(DSC) and a tensile test machine, respectively. In order to enhance insufficient wetting properties of Sn-0.3Ag-0.7Cu alloy, the improvement of wetting properties were analyzed by applying fluxes containing higher content of halide or indium adding of 0.2wt.% into the solder alloy. It was concluded that the small addition of indium is more effective for the improvement of wettability in low temperature range of $230{\sim}240^{\circ}C$ than applying flux containing higher content of halide.

  • PDF

Forming Limit Diagrams of Zircaloy-4 and Zirlo Sheets for Stamping of Spacer Grids of Nuclear Fuel Rods (핵연료 지지격자 성형을 위한 Zircaloy-4와 Zirlo 판재의 성형한계도 예측)

  • Seo, Yun-Mi;Hyun, Hong-Chul;Lee, Hyung-Yil;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.889-897
    • /
    • 2011
  • In this work, we investigated the theoretical forming limit models for Zircaloy-4 and Zirlo used for spacer grid of nuclear fuel rods. Tensile and anisotropy tests were performed to obtain stress-strain curves and anisotropic coefficients. The experimental forming limit diagrams (FLD) for two materials were obtained by dome stretching tests following NUMISHEET 96. Theoretical FLD depends on FL models and yield criteria. To obtain the right hand side (RHS) of FLD, we applied the FL models (Swift's diffuse necking, M-K theory, S-R vertex theory) to Zircaloy-4 and Zirlo sheets. Hill's local necking theory was adopted for the left hand side (LHS) of FLD. To consider the anisotropy of sheets, the yield criteria of Hill and Hosford were applied. Comparing the predicted curves with the experimental data, we found that the RHS of FLD for Zircaloy-4 can be described by the Swift model (with the Hill's criterion), while the LHS of the FLD can be explained by Hill model. The FLD for Zirlo can be explained by the S-R model and the Hosford's criterion (a = 8).

A Study on the Stability of Deep Tunnels Considering Brittle Failure Characteristic (취성파괴특성을 고려한 심부터널의 안정성 평가기법 연구)

  • Park, Hyun-Ik;Park, Yeon-Jun;You, Kwang-Ho;Noh, Bong-Kun;Seo, Young-Ho;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.304-317
    • /
    • 2009
  • Most crystalline rocks have much higher compressive strength than tensile strength and show brittle failure. In-situ rock mass, strong enough in general sense, often fails in brittle manner when subjected to high stress exceeding strength in due of geometrically induced stress concentration or of high initial stress. Therefore, it is necessary to verify the brittle failure characteristics of rock and rock mass for proper stability assessment of underground structures excavated in great depths. In this study, damage controlled tests were conducted on biotite-granite and granitic gneiss, which are the two major crystalline rock types in Korea, to obtain the strain dependency characteristics of the cohesion and friction angle. A Cohesion-Weakening Friction-Strengthening (CWFS hereafter) model for each rock type was constructed and a series of compression tests were carried out numerically while varying confining pressures. The same tests were also conducted assuming the rock is Mohr-Coulomb material and results were compared.

Evaluation of Mechanical Performance of a Segment Lining coated by a Sprayed Waterproofing Membrane by a Full-scale Loading Test (실물 재하실험에 의한 뿜칠 방수 멤브레인이 타설된 세그먼트 라이닝의 역학적 성능 평가)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Park, Byungkwan;Kim, Jintae;Choi, Myung-Sik;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.97-110
    • /
    • 2018
  • The application of sprayed waterproofing membrane with high adhesion and ductility is considered to be promising as a measure for repair and reinforcement of a tunnel structure. Therefore, a powder-type and one-component membrane prototype with high tensile and bond strengths was made in this study. Then, its reinforcement effect on a shield segment was evaluated by carrying out a series of full-scale loading tests of segment specimens on which the membrane was sprayed. From the tests, it was confirmed that the initial cracking loads increased by approximately 34% due to cracking retardation by membrane coating. Even though the increase of failure loads were not so high as cracking loads, the strain-softening behaviors were observed from specimens coated by the membrane. Therefore, it is expected that the membrane coated on the inner surface of a lining might be effective in preventing its brittle failure.

Fabrication of Stress-balanced $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ Dielectric Membrane (스트레스균형이 이루어진 $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ 유전체 멤브레인의 제작)

  • Kim, Myung-Gyoo;Park, Dong-Soo;Kim, Chang-Won;Kim, Jin-Sup;Lee, Jung-Hee;Lee, Jong-Hyun;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.51-59
    • /
    • 1995
  • Stress-balanced flat 150 nm-$Si_{3}N_{4}$/300 nm-$SiO_{2}$/150 nm-$Si_{3}N_{4}$ dielectric membrane on silicon substrate has been fabricated. Analyses of stress-deflection and stress-temperature, and visual inspection for the strain diagnostic test patterns were performed in order to characterize stress properties of the membrane. The $SiO_{2}$ layers sandwiched between two $Si_{3}N_{4}$ layers were deposited by three different techniques(PECVD, LPCVD, and APCVD) for the purpose of investigating the dependence of stress on the deposition methods. Some extent of tensile stress in the membrane was always observed regardless of the deposition methods, however it could be balanced against silicon substrate by post-wet oxidation in $1,150^{\circ}C$. Stress-temperature characteristics of the membranes showed that APCVD-LTO was better as mid-$SiO_{2}$ layer than PECVD - or LPCVD - $SiO_{2}$ when there was no oxidation process.

  • PDF

Evaluation on Structural Performance of Precast Bridge Deck Joint using HSFRC (고강도 강섬유보강콘크리트를 적용한 프리캐스트 바닥판 이음부의 구조성능 평가)

  • Lee, Han-Joo;Chung, Chul-Hun;Shin, Dong-Ho;Park, Se-Jin;Kim, In-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.196-205
    • /
    • 2017
  • In precast deck system, structural performance and serviceability are mostly determined by the connection methods between the precast decks. This study proposes precast deck system with asymmetric ribbed connection details using High Strength Fiber Reinforced Concrete(HSFRC) with filler. To verify the proposed method, the flexural performance experiment was carried out with variation of joint cross section type and splice rebar details. From the test results, regardless of joint details, spliced tensile rebars of specimens were deformed to yielding strain level. Also, all types of specimens resulted in sufficient flexural performance. These test results show that the minimum lap splice length specified in current Korea Highway Bridge Design Code is conservative for precast deck joint using HSFRC. Therefore, splice details can be simplified and joint width can be reduced by using HSFRC with filler between the precast decks, and the proposed precast deck systems can be applied to the connection part of precast decks effectively.