• Title/Summary/Keyword: Tensile bond behavior

Search Result 106, Processing Time 0.041 seconds

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.

Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 RC보의 휨 부착성능)

  • 유영찬;최기선;최근도;김긍환;이한승
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.549-555
    • /
    • 2002
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that of the steel reinforcement, but the design strength of CFRP is normally limited by unpredictable bond failure between RC and CFRP. Many researches concerned with bond behavior between RC and CFRP have been carried out to prevent the bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP has not been constructed. In this study, three beam specimens strengthened by CFRP under the parameters of bonded length were tested to derive the design bond strength of CFRP for the RC flexural members. Each bonded length was calculated based on the bond strength of JCI and CFRP manufacturing company. Also, another two beam specimens strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin, and the amount of epoxy primer. From the test results, it is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau$a =8 kgf/㎠.

A numerical tension-stiffening model for ultra high strength fiber-reinforced concrete beams

  • Na, Chaekuk;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.1-22
    • /
    • 2011
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber-reinforced concrete (UHSFRC) structures subject to monotonic loadings is introduced. Since engineering material properties of UHSFRC are remarkably different from those of normal strength concrete and engineered cementitious composite, classification of the mechanical characteristics related to the biaxial behavior of UHSFRC, from the designation of the basic material properties such as the uniaxial stress-strain relationship of UHSFRC to consideration of the bond stress-slip between the reinforcement and surrounding concrete with fiber, is conducted in this paper in order to make possible accurate simulation of the cracking behavior in UHSFRC structures. Based on the concept of the equivalent uniaxial strain, constitutive relationships of UHSFRC are presented in the axes of orthotropy which coincide with the principal axes of the total strain and rotate according to the loading history. This paper introduces a criterion to simulate the tension-stiffening effect on the basis of the force equilibriums, compatibility conditions, and bond stress-slip relationship in an idealized axial member and its efficiency is validated by comparison with available experimental data. Finally, the applicability of the proposed numerical model is established through correlation studies between analytical and experimental results for idealized UHSFRC beams.

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

High Temperature Tensile Property of Transient Liquid Bonded Joints of Ni-base Single Crystal Superalloy (액상확산접합한 Ni기 단결정 초내열합금의 고온인장특성)

  • 김대업;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.106-113
    • /
    • 2000
  • Single crystallization behavior ad high temperature tensile properties of TLP bonded joints of Ni-base single crystal superalloy, CMSX-2 were investigated using MBF-80 and F-24 insert metals. CMSX-2 was bonded at 1523~1548K for 1.5~1.8ks in vacuum. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. Crystallographic orientation analyzed points over the bonded region possessed the almost same orientation across the joint interface and misorientation $\Delta^{\theta}$ was negligibly small in as-bonded and post-bond heat-treated situations. It was confirmed that single crystallization could be readily achieved during TLP bonding. The tensile strengths of all joints at elevated temperatures were equal to or greater than those of base metal the range of testing temperature between 923K and 1173K. The elongation and reduction of area in values were almost the same as those of base metal. SEM observation of the fracture surfaces of joints after tensile test revealed that the fracture surface indicated the similar morphologies each other, and that the fracture of joints occurred in the base metal in any cases.

  • PDF

Simple Evaluation Method of Uplift Resistance for Frictional Shallow Anchors in Rock

  • Kim, Daehong;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • This paper presents the results of full-scale load tests performed frictional anchors to various lengths at several sites in Korea. Various rock types were tested, ranging from highly weathered shale to sound gneiss. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. Laboratory tests were also conducted to investigate the influence of the corrosion protection sheath on the bond strength. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for structural foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Numerical analyses of the force transfer in concrete-filled steel tube columns

  • Starossek, Uwe;Falah, Nabil;Lohning, Thomas
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.241-256
    • /
    • 2010
  • The interaction between steel tube and concrete core is the key issue for understanding the behavior of concrete-filled steel tube columns (CFTs). This study investigates the force transfer by natural bond or by mechanical shear connectors and the interaction between the steel tube and the concrete core under three types of loading. Two and three-dimensional nonlinear finite element models are developed to study the force transfer between steel tube and concrete core. The nonlinear finite element program ABAQUS is used. Material and geometric nonlinearities of concrete and steel are considered in the analysis. The damage plasticity model provided by ABAQUS is used to simulate the concrete material behavior. Comparisons between the finite element analyses and own experimental results are made to verify the finite element models. A good agreement is observed between the numerical and experimental results. Parametric studies using the numerical models are performed to investigate the effects of diameterto-thickness ratio, uniaxial compressive strength of concrete, length of shear connectors, and the tensile strength of shear connectors.

Behavior of FRP bonded to steel under freeze thaw cycles

  • Toufigh, Vahab;Toufigh, Vahid;Saadatmanesh, Hamid
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.41-55
    • /
    • 2013
  • Fiber reinforced polymers (FRP) materials are increasingly being used for strengthening and repair of steel structures. An issue that concerns engineers in steel members which are retrofitted with FRP is stress experienced due to temperature changes. The changing temperature affects the interface bond between the FRP and Steel. This research focused on the effects of cyclical thermal loadings on the interface properties of FRP bounded to steel members. Over fifty tests were conducted to investigate the thermal effects on bonding between FRP and steel, which were cycled from temperature of $-11^{\circ}C$ ($12^{\circ}F$) to $60^{\circ}C$ ($140^{\circ}F$) for 21-36 days. This investigation consisted of two test protocols, 1) the tensile test of epoxy resin, tack coat, FRP and FRP-steel plate, 2) tensile test of each FRP compound and FRP with steel after going through thermal cyclic loading. This investigation reveals an extensive reduction in the composite's strength.

Effects of an Inorganic Compound Added to Amino Resin Binders for Manufacture of Plywood

  • Lee, Sang-Min;Yoon, Kyoung-Dong;Park, Jong-Young;Park, Sang-Bum
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • Curing behavior and structural property of an inorganic compound added urea-formaldehyde(UF) and urea-melamine-formaldehyde(UMF) were studied. In addition, tensile strength and formaldehyde emission of plywoods made of those resin binders were studied. Curing temperature and structure were not changed, but tensile strengths of plywoods manufactured both with a UF resin and a UMF resin were decreased slightly as increased amount of inorganic compound. Formaldehyde emissions from plywoods were reduced as increased amount of inorganic compound. Wheat flour as an extender was helped to reduce of formaldehyde emission. From the result of this study it might be estimated that using appropriate amount of inorganic compound and proper resin system can be strengthened bond strength and reduced formaldehyde emission.

Finite Element Analysis of Connections between RC and Steel Member under Tensile Loading (인장력을 받는 RC 부재와 철골 부재 접합부의 유한요소해석)

  • 김은주;김승훈;서수연;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.75-82
    • /
    • 2001
  • Finite element analysis using ANSYS program conducted to evaluate the tensile behavior of the connection between reinforced concrete and steel members is presented in this paper. It is assumed that there is a complete bond between head part of the stud and concrete. However, the surface of the column area of stud is separated from the concrete to stop the stress transmission between those. In case of using reinforcement connectors such as C or U type, the interface between concrete and reinforcement is idealized to have strong adhesion. Four concrete-steel specimens which are connected by stud connector or reinforcement connectors are compared and analyzed From the comparison, it was shown that the connection between concrete and steel could be predicted by using the modeling technique used in this paper.

  • PDF