• Title/Summary/Keyword: Tensile Stress

Search Result 2,804, Processing Time 0.032 seconds

Boundary Element Analysis for Edge Cracks at the Bonding Interface of Semiconductor Chip (반도체 칩 접착계면의 모서리 균열에 대한 경계요소 해석)

  • 이상순
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.25-30
    • /
    • 2001
  • The stress intensity factors for edge cracks located at the bonding interface between the semiconductor chip and the adhesive layer subjected to a uniform transverse tensile strain are investigated. Such cracks might be generated due to a stress singularity in the vicinity of the free surface. The boundary element method (BEM) is employed to investigate the behavior of interface stresses. The amplitude of complex stress intensity factor depends on the crack length, but it has a constant value at large crack lengths. The rapid propagation of interface crack is expected if the transverse tensile strain reaches a critical value.

  • PDF

Fatigue Analysis of Spot Welded Joints in Suspension Mounting Part

  • Yum, Youung-Jin;Chu, Young-Woo;Chu, Seok-Jae;Kim, Jung-Han;Hee You
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1113-1119
    • /
    • 2003
  • Experimental and numerical analyses were performed to characterize the fatigue behavior of spot welded joints in suspension mounting of a passenger car body. Static and fatigue tests were carried out for the tensile-shear and cross-tension specimens. S-N curve and fatigue strengths were obtained from the fatigue test of various specimens. Nonlinear finite element analysis showed that fatigue behavior of spot welded joints could be well estimated in terms of Von Mises stress at the nugget edge. Fatigue behavior of spot welded joint was represented by Von Mises stress better than the fatigue load.

Strength and Impact Damage Characteristics of A17075/CFRP Sandwitch Pannel by Using Automobiles (자동차용 경량화 A17075 / CFRP 샌드위치 판넬의 강도와 충격손상 특성)

  • Yoon, Han-Ki;Lee, Jong-Ho;Park, Yi-Hyun;Lee, Je-Heon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.295-300
    • /
    • 2002
  • To establish an optimum condition in the surface treatment and curing process will be an important parameters for the fabrication of multilayered hybrid composite materials, A17075/CFRP (CARALL : carbon fiber reinforce aluminum laminates). Effects of carbon fiber direction and thickness variation in tensile strength were investigated. And impact damage behavior of carbon fiber reinforce plastic (CFRP) and CARALL were investigated also, it was found that a partial stress increase in order of epoxy adhesive, A17075, CFRP. And the partial stress of CFRP carried out a great portion of applied stress. The impact damage resistance of CARALL was higher than that of CFRP. This is because both side Al sheet of CARALL absorb a great of impact damage.

  • PDF

Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites

  • Fattahi, A.M.;Safaei, Babak;Qin, Zhaoye;Chu, Fulei
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.177-187
    • /
    • 2021
  • The effect of nanoparticle volume fraction on the elastic properties of a polymer-based nanocomposite was experimentally investigated and the obtained results were compared with various existing theoretical models. The nanocomposite was consisted of high density polyethylene (HDPE) as polymeric matrix and 0, 0.5, 1 and 1.5 wt.% multi walled carbon nanotubes (MWCNTs) prepared using twin screw extruder and injection molding technique. Nanocomposite samples were molded in injection apparatus according to ASTM-D638 standard. Therefore, in addition to morphological investigations of the samples, tensile tests at ambient temperature were performed on each sample and stress-strain plots, elastic moduli, Poisson's ratios, and strain energies of volume units were extracted from primary strain test results. Tensile test results demonstrated that 1 wt.% nanoparticles presented the best reinforcement behavior in HDPE-MWCNT nanocomposites. Due to the agglomeration of nanoparticles at above 1 wt.%, Young's modulus, yielding stress, fracture stress, and fracture energy were decreased and Poisson's ratio and failure strain were increased.

Effect of Tire Contact Stresses on Tensile Strains in the Surface of Thin Asphalt Pavement (접지압력이 앎은 아스팔트포장 표층 인장 변형률에 미치는 영향 분석)

  • Park, Dae-Wook;Park, Joon-Kyu
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.47-55
    • /
    • 2008
  • In this paper, comparisons are presented on the predicted tensile strains which can affect the fatigue life of a thin asphalt concrete (AC) pavement near the surface of pavement from three-dimensional (3D) finite element (FE) using 3D measured tire contact stresses of a radial tire and a bias ply tire and a layered linear elastic program (BISAR). The objective was to analyze the stress distributions for a 11R22.5 radial tire and a $10{\times}20$ bias ply tire, and to compare the predicted tensile strains at the top and bottom of AC surface using different analysis methods. The results show that the stress distributions of two tires are similar but the 11R22.5 radial tire has much higher vertical contact stress than that of the $10{\times}20$ bias ply tire. The predicted tensile strains at the bottom of AC layer under the center of tire showed higher value by BM (BISAR with the measured contact area) method, which the measured tire contact area is used in a layered elastic program, while the tensile strain at the top of AC surface of 3.5cm offset distance from tire edge by 3D FE analysis showed the highest values among three analysis methods.

  • PDF

Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test (절삭실험을 이용한 저합금강의 유동응력 결정 및 검증)

  • Ahn, Kwang-Woo;Kim, Dong-Hoo;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young;Yang, Daum;Kim, Ha-Neui;Jung, Kyoung-Suk;Chang, Young-Il;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

A study on the mechanical behavior of the optical fiber sensors embedded in the composite laminate (복합재료 적층판에 삽입된 광섬유 센서의 기계적 특성에 관한 연구)

  • Shin, Kum-Cheol;Lee, Jung-Ju;Kwon, Il-Bum
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.440-447
    • /
    • 1999
  • Tensile stress loaded on smart composite structures and thermal stress occurred during the during process of the smart composite materials with embedded optical fiber sensors affect directly the mechanical behavior of the embedded optical fiber sensors within the smart composite structures. Stress distribution within the optical fiber sensors varies with respect to the stacking sequence of the composite laminate and the coating conditions of the optical fibers. The cracks occurred within the composite laminate affect not only the fracture of the composite laminate but also the fracture of the optical fiber sensors embedded within the composite laminate. In this study, firstly, stress distribution of the optical fiber sensors embedded within the composite laminate which is subjected to the tensile and thermal stresses was analyzed using Finite Element Method. And, secondly, the effect of the stacking sequence of the composite laminate and the coating conditions of the optical fiber sensors on the stress distribution of the optical fiber sensors was investigated. Finally, the effect of the crack occurred within the smart composite laminate on the fracture behavior of the optical fiber sensors was also observed through the tensile test.

  • PDF

End Stress Analysis of Overlaid Concrete Structures Subjected to Thermally Transient Condition by Rainfall (강우에 따른 콘크리트 덧씌우기 보수체의 단부 온도응력 해석)

  • 윤우헌
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.145-151
    • /
    • 1998
  • The vertical tensile stress, ${\sigma}_y$, in the contact zone between the overlay (mortar layer) and substratum (base concrete) can be the main cause of the failure phenomenon of overlaid concrete structures. The development of tensile stress, ${\sigma}_y$, due to external rainy condition was analytically investigated using finite element method. Rainfall intensity $(n_R\;=\;1/a,\;t_R\;=\;10min,\;60min)$, thickness of overlay (do=1,2,4,10 cm) and overlay material (CM,ECM,EM) were the main variables in the analyses. An equation was suggested with which the development of vertical tensile stress, ${\sigma}_y$, in the rainy condition could be determined. Using this equation, it is possible to select proper material properties and overlay thicknesses to prevent failure in the contact zone due to thermally transient condition caused by rainfall.

Tensile Stress Measurement of Tendon with Wiedemann Effect (Wiedemann 효과를 이용한 텐던의 인장력 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.133-136
    • /
    • 2016
  • In this study, we have constructed a measuring system to investigate tensile stress of tendons, which is employed in bridges, by means of the magnetic non-destructive testing (NDT) method. For the twisted 7-strands tendon, we have used Wiedemann effect. An ac current was applied to the tendon and voltage induced from Search Coil on Tendon (SCT) under applying tensile stress was measured. The measuring system consists of tensile stress applying apparatus up to 2 GPa, and ac current supply to apply current to the tendon directly to magnetize the tendon. We have invested two kinds of tendon which were produced by different companies for testing with constructed measuring system. Voltage induced from SCT was decreased up to 1.5 GPa linearly and two kinds of tendon which were produced by different companies shows similar trends. Thus, Wiedemann effect was also applicable to measure tensile stress of tendon by means of magnetic NDT.